IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v30y2015i6p987-1009.html

Estimating and Forecasting the Yield Curve Using A Markov Switching Dynamic Nelson and Siegel Model

Author

Listed:
  • Constantino Hevia
  • Martin Gonzalez‐Rozada
  • Martin Sola
  • Fabio Spagnolo

Abstract

We estimate versions of the Nelson-Siegel model of the yield curve of U.S. government bonds using a Markov switching latent variable model that allows for discrete changes in the stochastic process followed by the interest rates. Our modelling approach is motivated by evidence suggesting the existence of breaks in the behaviour of the U.S. yield curve that depend, for example, on whether the economy is in a recession or a boom, or on the stance of monetary policy. Our model is parsimonious, relatively easy to estimate, and flexible enough to match the changing shapes of the yield curve over time. We also derive the discrete time non-arbitrage restrictions for the Markov switching model. We compare the forecasting performance of these models with that of the standard dynamic Nelson and Siegel model and an extension that allows the decay rate parameter to be time-varying. We show that some parameterizations of our model with regime shifts outperform the single regime Nelson and Siegel model and other standard empirical models of the yield curve.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Constantino Hevia & Martin Gonzalez‐Rozada & Martin Sola & Fabio Spagnolo, 2015. "Estimating and Forecasting the Yield Curve Using A Markov Switching Dynamic Nelson and Siegel Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(6), pages 987-1009, September.
  • Handle: RePEc:wly:japmet:v:30:y:2015:i:6:p:987-1009
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrino, Francesco & Serwart, Jan, 2024. "Yield curve trading strategies exploiting sentiment data," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    2. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Mustafa Demirel & Gazanfer Unal, 2020. "Applying multivariate-fractionally integrated volatility analysis on emerging market bond portfolios," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-29, December.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Levant, Jared & Ma, Jun, 2017. "A dynamic Nelson-Siegel yield curve model with Markov switching," Economic Modelling, Elsevier, vol. 67(C), pages 73-87.
    6. Fischer, Manfred M. & Hauzenberger, Niko & Huber, Florian & Pfarrhofer, Michael, 2022. "General Bayesian time-varying parameter VARs for modeling government bond yields," Working Papers in Regional Science 2021/01, WU Vienna University of Economics and Business.
    7. Renata Tavanielli & Márcio Laurini, 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    8. Guidolin, Massimo & Pedio, Manuela, 2019. "Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    9. Koeda, Junko & Sekine, Atsushi, 2022. "Nelson–Siegel decay factor and term premia in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 64(C).
    10. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
    11. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    12. Siyu Bie & Francis X. Diebold & Jingyu He & Junye Li, 2024. "Machine Learning and the Yield Curve:Tree-Based Macroeconomic Regime Switching," PIER Working Paper Archive 24-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Luo, Deqing & Pang, Tao & Xu, Jiawen, 2021. "Forecasting U.S. Yield Curve Using the Dynamic Nelson–Siegel Model with Random Level Shift Parameters," Economic Modelling, Elsevier, vol. 94(C), pages 340-350.
    14. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    15. Fausto Vieira & Fernando Chague, Marcelo Fernandes, 2016. "A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US," Working Papers, Department of Economics 2016_31, University of São Paulo (FEA-USP).
    16. Gordon H. Dash & Nina Kajiji & Domenic Vonella, 2018. "The role of supervised learning in the decision process to fair trade US municipal debt," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 139-168, June.
    17. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2021. "General Bayesian time-varying parameter VARs for predicting government bond yields," Papers 2102.13393, arXiv.org.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:30:y:2015:i:6:p:987-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.