IDEAS home Printed from https://ideas.repec.org/p/old/dpaper/398.html
   My bibliography  Save this paper

Designing long-lived investments under uncertain and ongoing change

Author

Listed:
  • Klaus Eisenack
  • Marius Paschen

    (University of Oldenburg, Department of economics)

Abstract

Shall investments become more robust or more short-lived if unfavorable exogeneous conditions become more uncertain? What if the investments' design is irreversible for its whole life time? Such decision problems are frequently encountered, for example in infrastructure construction. We analyze this problem by combining an irreversible design decision when the investment starts with an irreversible decision to abandon an outdated investment. We formulate the second decision as a stopping problem of stochastic dynamic control, derive the value function, and the comparative statics for an optimal design. We find a decreasing optimal expected life-time and decreasing robustness for more rapidly changing conditions if the original life-time is not too large. For rising uncertainty, originally shorter-lived investments' life-times are expanded. For more long-lived investments, these effects may reverse. There can be a case for making investments less robust in the light of uncertain and ongoing change.

Suggested Citation

  • Klaus Eisenack & Marius Paschen, 2017. "Designing long-lived investments under uncertain and ongoing change," Working Papers V-398-17, University of Oldenburg, Department of Economics, revised Feb 2017.
  • Handle: RePEc:old:dpaper:398
    as

    Download full text from publisher

    File URL: http://www.uni-oldenburg.de/fileadmin/user_upload/wire/fachgebiete/vwl/V-398-17.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    2. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    3. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    4. David Crosthwaite, 2000. "The global construction market: a cross-sectional analysis," Construction Management and Economics, Taylor & Francis Journals, vol. 18(5), pages 619-627.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Martin L. Weitzman, 2013. "Tail-Hedge Discounting and the Social Cost of Carbon," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 873-882, September.
    7. Bent Flyvbjerg, 2014. "What You Should Know About Megaprojects, and Why: An Overview," Papers 1409.0003, arXiv.org.
    8. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    9. Turvey, R., 2000. "Infrastructure access pricing and lumpy investments," Utilities Policy, Elsevier, vol. 9(4), pages 207-218, December.
    10. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    11. Ramey, Garey & Ramey, Valerie A, 1995. "Cross-Country Evidence on the Link between Volatility and Growth," American Economic Review, American Economic Association, vol. 85(5), pages 1138-1151, December.
    12. Tyler Felgenhauer & Mort Webster, 2014. "Modeling adaptation as a flow and stock decision with mitigation," Climatic Change, Springer, vol. 122(4), pages 665-679, February.
    13. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    14. Fisher, Anthony C. & Rubio, Santiago J., 1997. "Adjusting to Climate Change: Implications of Increased Variability and Asymmetric Adjustment Costs for Investment in Water Reserves," Journal of Environmental Economics and Management, Elsevier, vol. 34(3), pages 207-227, November.
    15. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    16. Sarkar, Sudipto, 2000. "On the investment-uncertainty relationship in a real options model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 219-225, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eisenack, Klaus & Paschen, Marius, 2022. "Adapting long-lived investments under climate change uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    2. Yu-Fu Chen & Michael Funke, 2010. "Global Warming And Extreme Events: Rethinking The Timing And Intensity Of Environmental Policy," Dundee Discussion Papers in Economics 236, Economic Studies, University of Dundee.
    3. Xiao, Yi-bin & Fu, Xiaowen & Ng, Adolf K.Y. & Zhang, Anming, 2015. "Port investments on coastal and marine disasters prevention: Economic modeling and implications," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 202-221.
    4. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    5. Truong, Chi & Trück, Stefan & Mathew, Supriya, 2018. "Managing risks from climate impacted hazards – The value of investment flexibility under uncertainty," European Journal of Operational Research, Elsevier, vol. 269(1), pages 132-145.
    6. LOFGREN Asa & MILLOCK Katrin & NAUGES Céline, 2007. "Using Ex Post Data to Estimate the Hurdle Rate of Abatement Investments - An application to the Swedish Pulp and Paper Industry and Energy Sector," LERNA Working Papers 07.06.227, LERNA, University of Toulouse.
    7. Agliardi, Elettra & Sereno, Luigi, 2012. "Environmental protection, public finance requirements and the timing of emission reductions," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 715-739, December.
    8. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    9. Klaus Mittenzwei & David S. Bullock & Klaus Salhofer, 2012. "Towards a theory of policy timing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 583-596, October.
    10. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    11. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    13. Makropoulou, Vasiliki & Dotsis, George & Markellos, Raphael N., 2013. "Environmental policy implications of extreme variations in pollutant stock levels and socioeconomic costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 417-428.
    14. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2011. "EKC-type transitions and environmental policy under pollutant uncertainty and cost irreversibility," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 746-763, May.
    15. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2017. "Strategic Technology Switching under Risk Aversion and Uncertainty," Discussion Papers 2017/10, Norwegian School of Economics, Department of Business and Management Science.
    16. E. Agliardi & L. Sereno, 2012. "On the optimal timing of switching from non-renewable to renewable resources: dirty vs clean energy sources and the relative efficiency of generators," Working Papers wp855, Dipartimento Scienze Economiche, Universita' di Bologna.
    17. Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
    18. Sarkar, Sudipto, 2021. "The uncertainty-investment relationship with endogenous capacity," Omega, Elsevier, vol. 98(C).
    19. Cunha-e-Sá, Maria A. & Balcão Reis, Ana & Roseta-Palma, Catarina, 2009. "Technology adoption in nonrenewable resource management," Energy Economics, Elsevier, vol. 31(2), pages 235-239, March.
    20. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2021. "Strategic technology switching under risk aversion and uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:old:dpaper:398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catharina Schramm (email available below). General contact details of provider: https://edirc.repec.org/data/fwoldde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.