IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23867.html
   My bibliography  Save this paper

A Theory of Experimenters

Author

Listed:
  • Abhijit Banerjee
  • Sylvain Chassang
  • Sergio Montero
  • Erik Snowberg

Abstract

This paper proposes a decision-theoretic framework for experiment design. We model experimenters as ambiguity-averse decision-makers, who make trade-offs between subjective expected performance and robustness. This framework accounts for experimenters' preference for randomization, and clarifies the circumstances in which randomization is optimal: when the available sample size is large enough or robustness is an important concern. We illustrate the practical value of such a framework by studying the issue of rerandomization. Rerandomization creates a trade-off between subjective performance and robustness. However, robustness loss grows very slowly with the number of times one randomizes. This argues for rerandomizing in most environments.

Suggested Citation

  • Abhijit Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2017. "A Theory of Experimenters," NBER Working Papers 23867, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23867
    Note: DEV ED EH LS PE POL
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23867.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    2. Philippe Aghion & Patrick Bolton & Christopher Harris & Bruno Jullien, 1991. "Optimal Learning by Experimentation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(4), pages 621-654.
    3. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    4. Humphreys, Macartan & Sanchez de la Sierra, Raul & van der Windt, Peter, 2013. "Fishing, Commitment, and Communication: A Proposal for Comprehensive Nonbinding Research Registration," Political Analysis, Cambridge University Press, vol. 21(1), pages 1-20, January.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    7. Bergemann, Dirk & Valimaki, Juuso, 1996. "Learning and Strategic Pricing," Econometrica, Econometric Society, vol. 64(5), pages 1125-1149, September.
    8. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    9. Benjamin A. Olken, 2015. "Promises and Perils of Pre-analysis Plans," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 61-80, Summer.
    10. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    11. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    12. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    14. Kasy, Maximilian, 2016. "Why Experimenters Might Not Always Want to Randomize, and What They Could Do Instead," Political Analysis, Cambridge University Press, vol. 24(3), pages 324-338, July.
    15. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    16. Kota Saito, 2015. "Preferences for Flexibility and Randomization under Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1246-1271, March.
    17. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    18. Nicola Persico, 2000. "Information Acquisition in Auctions," Econometrica, Econometric Society, vol. 68(1), pages 135-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliaz, Kfir & Spiegler, Ran, 2022. "On incentive-compatible estimators," Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
    2. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    3. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    4. Luc Behaghel & Karen Macours & Julie Subervie, 2018. "Can RCTs help improve the design of CAP," Working Papers hal-01974425, HAL.
    5. Luc Behaghel & Karen Macours & Julie Subervie, 2019. "How can randomised controlled trials help improve the design of the common agricultural policy?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(3), pages 473-493.
    6. Deaton, Angus & Cartwright, Nancy, 2018. "Understanding and misunderstanding randomized controlled trials," Social Science & Medicine, Elsevier, vol. 210(C), pages 2-21.
    7. Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
    8. Pablo Balán & Augustin Bergeron & Gabriel Tourek & Jonathan L. Weigel, 2022. "Local Elites as State Capacity: How City Chiefs Use Local Information to Increase Tax Compliance in the Democratic Republic of the Congo," American Economic Review, American Economic Association, vol. 112(3), pages 762-797, March.
    9. Kfir Eliaz & Ran Spiegler, 2019. "The Model Selection Curse," American Economic Review: Insights, American Economic Association, vol. 1(2), pages 127-140, September.
    10. Weigel, Jonathan & Balán, Pablo & Bergeron, Augustin & Tourek, Gabriel, 2020. "Local Elites as State Capacity: How City Chiefs Use Local Information to Increase Tax Compliance in the D.R. Congo," CEPR Discussion Papers 15138, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijit Banerjee & Sylvain Chassang & Erik Snowberg, 2016. "Decision Theoretic Approaches to Experiment Design and External Validity," NBER Working Papers 22167, National Bureau of Economic Research, Inc.
    2. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    3. Isaiah Andrews & Jesse M. Shapiro, 2021. "A Model of Scientific Communication," Econometrica, Econometric Society, vol. 89(5), pages 2117-2142, September.
    4. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    5. Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
    6. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," PIER Working Paper Archive 20-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
      • Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    7. Annette N. Brown & Drew B. Cameron & Benjamin D. K. Wood, 2014. "Quality evidence for policymaking: I'll believe it when I see the replication," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 6(3), pages 215-235, September.
    8. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    9. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    10. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    11. Vives, Xavier, 1997. "Learning from Others: A Welfare Analysis," Games and Economic Behavior, Elsevier, vol. 20(2), pages 177-200, August.
    12. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    13. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    14. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    15. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    16. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    17. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    18. Sylvain Chassang & Gerard Padro I Miquel & Erik Snowberg, 2012. "Selective Trials: A Principal-Agent Approach to Randomized Controlled Experiments," American Economic Review, American Economic Association, vol. 102(4), pages 1279-1309, June.
    19. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.

    More about this item

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.