IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0287.html
   My bibliography  Save this paper

Cointegration Vector Estimation by Panel DOLS and Long-Run Money Demand

Author

Listed:
  • Nelson C. Mark
  • Donggyu Sul

Abstract

We study the panel DOLS estimator of a homogeneous cointegration vector for a balanced panel of N individuals observed over T time periods. Allowable heterogeneity across individuals include individual-specific time trends, individual-specific fixed effects and time-specific effects. The estimator is fully parametric, computationally convenient, and more precise than the single equation estimator. For fixed N as T approaches infinity, the estimator converges to a function of Brownian motions and the Wald statistic for testing a set of linear constraints has a limiting chi-square distribution. The estimator also has a Gaussian sequential limit distribution that is obtained first by letting T go to infinity then letting N go to infinity. In a series of Monte Carlo experiments, we find that the asymptotic distribution theory provides a reasonably close approximation to the exact finite sample distribution. We use panel dynamic OLS to estimate coefficients of the long-run money demand function from a panel of 19 countries with annual observations that span from 1957 to 1996. The estimated income elasticity is 1.08 (asymptotic s.e.=0.26) and the estimated interest rate semi-elasticity is -0.02 (asymptotic s.e.=0.01).

Suggested Citation

  • Nelson C. Mark & Donggyu Sul, 2002. "Cointegration Vector Estimation by Panel DOLS and Long-Run Money Demand," NBER Technical Working Papers 0287, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0287
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0287.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:etheor:v:7:y:1991:i:1:p:1-21 is not listed on IDEAS
    2. Donggyu Sul & Peter C. B. Phillips & Chi-Young Choi, 2005. "Prewhitening Bias in HAC Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 517-546, August.
    3. Gandolfi, Arthur E & Lothian, James R, 1976. "The Demand for Money from the Great Depression to the Present," American Economic Review, American Economic Association, vol. 66(2), pages 46-51, May.
    4. Allan H. Meltzer, 1963. "The Demand for Money: A Cross-Section Study of Business Firms," The Quarterly Journal of Economics, Oxford University Press, vol. 77(3), pages 405-422.
    5. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    8. King, Robert G., 1988. "Money demand in the United States: A quantitative review," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 29(1), pages 169-172, January.
    9. Lucas, Robert E., 1988. "Money demand in the United States: A quantitative review," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 29(1), pages 137-167, January.
    10. Phillips, Peter & Sul, Donggyu, 2002. "Dynamic Panel Estimation and Homogenity Testing Under Cross Section Dependence," Working Papers 194, Department of Economics, The University of Auckland.
    11. Chihwa Kao & Min-Hsien Chiang, 1997. "On the Estimation and Inference of a Cointegrated Regression in Panel Data," Econometrics 9703001, University Library of Munich, Germany.
    12. Ball, Laurence, 2001. "Another look at long-run money demand," Journal of Monetary Economics, Elsevier, vol. 47(1), pages 31-44, February.
    13. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    14. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    15. Casey B. Mulligan & Xavier Sala-I-Martin, 1992. "U.S. Money Demand: Surprising Cross-Sectional Estimates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 285-343.
    16. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(01), pages 1-21, March.
    17. Hoffman, Dennis L. & Rasche, Robert H. & Tieslau, Margie A., 1995. "The stability of long-run money demand in five industrial countries," Journal of Monetary Economics, Elsevier, vol. 35(2), pages 317-339, April.
    18. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    19. Pedroni, Peter, 1999. " Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    20. Inder, Brett, 1993. "Estimating long-run relationships in economics : A comparison of different approaches," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 53-68.
    21. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0287. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.