IDEAS home Printed from https://ideas.repec.org/p/mcl/mclwop/2007-01.html
   My bibliography  Save this paper

Forecast Content And Content Horizons For Some Important Macroeconomic Time Series

Author

Listed:
  • John W. Galbraith

    ()

  • Greg Tkacz

    ()

Abstract

For quantities that are approximately stationary, the information content of statistical forecasts tends to decline as the forecast horizon increases, and there exists a maximum horizon beyond which forecasts cannot provide discernibly more information about the variable than is present in the unconditional mean (the content horizon). The pattern of decay of forecast content (or skill) with increasing horizon is well known for many types of meteorological forecasts; by contrast, little generally-accepted information about these patterns or content horizons is available for economic variables. In this paper we attempt to develop more information of this type by estimating content horizons for variety of macroeconomic quantities; more generally, we characterize the pattern of decay of forecast content as we project farther into the future. We find wide variety of results for the different macroeconomic quantities, with models for some quantities providing useful content several years into the future, for other quantities providing negligible content beyond one or two months or quarters.

Suggested Citation

  • John W. Galbraith & Greg Tkacz, 2007. "Forecast Content And Content Horizons For Some Important Macroeconomic Time Series," Departmental Working Papers 2007-01, McGill University, Department of Economics.
  • Handle: RePEc:mcl:mclwop:2007-01
    as

    Download full text from publisher

    File URL: http://www.mcgill.ca/files/economics/forecastcontentand.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    2. Galbraith, John W. & KI[#x1e63]Inbay, Turgut, 2005. "Content horizons for conditional variance forecasts," International Journal of Forecasting, Elsevier, vol. 21(2), pages 249-260.
    3. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    4. Li Fuchun & Tkacz Greg, 2004. "Combining Forecasts with Nonparametric Kernel Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-18, December.
    5. Granger, Clive W J, 1996. "Can We Improve the Perceived Quality of Economic Forecasts?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 455-473, Sept.-Oct.
    6. Marc Brisson & Bryan Campbell & John Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    2. John Galbraith & Simon van Norden, 2009. "Calibration and Resolution Diagnostics for Bank of England Density Forecasts," CIRANO Working Papers 2009s-36, CIRANO.
    3. John Galbraith & Simon van Norden, 2008. "The Calibration of Probabilistic Economic Forecasts," CIRANO Working Papers 2008s-28, CIRANO.
    4. de Bruijn, L.P. & Franses, Ph.H.B.F., 2011. "Evaluating the Rationality of Managers' Sales Forecasts," Econometric Institute Research Papers EI 2011-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Galbraith, John W. & van Norden, Simon, 2011. "Kernel-based calibration diagnostics for recession and inflation probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1041-1057, October.
    6. Baggio, Rodolfo, 2015. "Looking into the future of complex dynamic systems," MPRA Paper 65549, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcl:mclwop:2007-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shama Rangwala). General contact details of provider: http://edirc.repec.org/data/demcgca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.