IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2009s-36.html
   My bibliography  Save this paper

Calibration and Resolution Diagnostics for Bank of England Density Forecasts

Author

Listed:
  • John Galbraith
  • Simon van Norden

Abstract

This paper applies new diagnostics to the Bank of England's pioneering density forecasts (fan charts). We compute their implicit probability forecast for annual rates of inflation and output growth that exceed a given threshold (in this case, the target inflation rate and 2.5% respectively.) Unlike earlier work on these forecasts, we measure both their calibration and their resolution, providing both formal tests and graphical interpretations of the results. These results both reinforce earlier evidence on some of the limitations of these forecasts and provide new evidence on their information content. Cet étude développe et applique des nouvelles techniques pour diagnostiquer les prévisions de densité de la Banque d'Angleterre (leur fan charts). Nous calculons leurs probabilités implicites pour des taux d'inflation et de croissance du PIB qui dépassent des seuils critiques (soit le taux d'inflation ciblé, soit 2.5%.) En contraste avec des travaux antérieurs sur ces prévisions, nous gaugeons leur calibration aussi bien que leur résolution, en donnant des tests formels et des interprétations graphiques. Les résultats renforcent des conclusions déjà existant sur les limites de ces prévisions et ils donnent de nouvelles évidences sur leurs valeurs ajoutées.

Suggested Citation

  • John Galbraith & Simon van Norden, 2009. "Calibration and Resolution Diagnostics for Bank of England Density Forecasts," CIRANO Working Papers 2009s-36, CIRANO.
  • Handle: RePEc:cir:cirwor:2009s-36
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/2009s-36.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. John Galbraith & Simon van Norden, 2008. "The Calibration Of Probabilistic Economic Forecasts," Departmental Working Papers 2008-05, McGill University, Department of Economics.
    2. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    3. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    4. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268.
    5. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    6. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    7. John W. Galbraith & Greg Tkacz, 2007. "Forecast content and content horizons for some important macroeconomic time series," Canadian Journal of Economics, Canadian Economics Association, vol. 40(3), pages 935-953, August.
    8. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    9. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    10. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, Elsevier.
    11. Casillas-Olvera, Gabriel & Bessler, David A., 2006. "Probability forecasting and central bank accountability," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 223-234, February.
    12. repec:nsr:niesrd:320 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393.

    More about this item

    Keywords

    calibration; density forecast; probability forecast; resolu; calibration; prévisions de densité; probabilités implicites; résolution.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2009s-36. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.