IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v34y2018i2p366-376.html
   My bibliography  Save this article

Nowcasting with payments system data

Author

Listed:
  • Galbraith, John W.
  • Tkacz, Greg

Abstract

We consider the potential usefulness of a large set of electronic payments data, comprising the values and numbers of both debit card transactions and cheques that clear through the banking system, for the problem of reducing the current-period forecast (‘nowcast’) loss for (the growth rates of) GDP and retail sales. The payments system variables capture a broad range of spending activity and are available on a very timely basis, making them suitable current indicators. We generate nowcasts of GDP and retail sales growth for a given month on seven different dates, over a period of two and a half months preceding the first official releases, which is the period over which nowcasts would be of interest. We find statistically significant evidence that payments system data can reduce the nowcast error for both GDP and retail sales growth. Both debit transaction and cheque clearance data are of value in reducing nowcast losses for GDP growth, although the latter are of little or no value when debit data are also included. For retail sales, cheque data appear to produce no further nowcast loss reductions, regardless of whether or not debit transactions are included in the nowcasting model.

Suggested Citation

  • Galbraith, John W. & Tkacz, Greg, 2018. "Nowcasting with payments system data," International Journal of Forecasting, Elsevier, vol. 34(2), pages 366-376.
  • Handle: RePEc:eee:intfor:v:34:y:2018:i:2:p:366-376
    DOI: 10.1016/j.ijforecast.2016.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207016301157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2016.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Ariel Burstein & Martin Eichenbaum & Sergio Rebelo, 2005. "Large Devaluations and the Real Exchange Rate," Journal of Political Economy, University of Chicago Press, vol. 113(4), pages 742-784, August.
    3. John W. Galbraith & Greg Tkacz, 2007. "Forecast content and content horizons for some important macroeconomic time series," Canadian Journal of Economics, Canadian Economics Association, vol. 40(3), pages 935-953, August.
    4. Silver, Mick & Heravi, Saeed, 2001. "Scanner Data and the Measurement of Inflation," Economic Journal, Royal Economic Society, vol. 111(472), pages 383-404, June.
    5. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    6. Arango, Carlos & Huynh, Kim P. & Sabetti, Leonard, 2011. "How do you pay? The role of incentives at the point-of-sale," Working Paper Series 1386, European Central Bank.
    7. Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
    8. Carlos Arango & Kim Huynh & Ben Fung & Gerald Stuber, 2012. "The Changing Landscape for Retail Payments in Canada and the Implications for the Demand for Cash," Bank of Canada Review, Bank of Canada, vol. 2012(Autumn), pages 31-40.
    9. Dora Gicheva & Justine Hastings & Sofia Villas-Boas, 2010. "Investigating Income Effects in Scanner Data: Do Gasoline Prices Affect Grocery Purchases?," American Economic Review, American Economic Association, vol. 100(2), pages 480-484, May.
    10. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    11. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    12. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    13. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    14. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    15. Venkatesh Shankar & Ruth N. Bolton, 2004. "An Empirical Analysis of Determinants of Retailer Pricing Strategy," Marketing Science, INFORMS, vol. 23(1), pages 28-49, May.
    16. Wesley Clair Mitchell & Arthur F. Burns, 1938. "Statistical Indicators of Cyclical Revivals," NBER Books, National Bureau of Economic Research, Inc, number mitc38-1.
    17. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    18. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    19. Jeffrey R. Campbell & Benjamin Eden, 2014. "Rigid Prices: Evidence From U.S. Scanner Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 423-442, May.
    20. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    21. John W. Galbraith & Greg Tkacz, 2013. "Analyzing Economic Effects of September 11 and Other Extreme Events Using Debit and Payments System Data," Canadian Public Policy, University of Toronto Press, vol. 39(1), pages 119-134, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John W. Galbraith & Greg Tkacz, 2013. "Nowcasting GDP: Electronic Payments, Data Vintages and the Timing of Data Releases," CIRANO Working Papers 2013s-25, CIRANO.
    2. Galbraith, John W. & Tkacz, Greg, 2015. "Nowcasting GDP with electronic payments data," Statistics Paper Series 10, European Central Bank.
    3. Raquel Nadal Cesar Gonçalves, 2022. "Nowcasting Brazilian GDP with Electronic Payments Data," Working Papers Series 564, Central Bank of Brazil, Research Department.
    4. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    5. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. John Galbraith & Greg Tkacz, 2007. "Electronic Transactions as High-Frequency Indicators of Economic Activity," Staff Working Papers 07-58, Bank of Canada.
    7. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    8. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    9. Scotti, Chiara, 2016. "Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 1-19.
    10. Marcos Dal Bianco & Jaime Martinez-Martín & Maximo Camacho, 2013. "Short-Run Forecasting of Argentine GDP Growth," Working Papers 1314, BBVA Bank, Economic Research Department.
    11. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201305, University of Hawaii at Manoa, Department of Economics.
    12. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    13. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    14. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Nowcasting," Working Papers ECARES ECARES 2010-021, ULB -- Universite Libre de Bruxelles.
    15. Rueben Ellul, 2016. "A real-time measure of business conditions in Malta," CBM Working Papers WP/04/2016, Central Bank of Malta.
    16. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    17. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    18. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
    19. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    20. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:34:y:2018:i:2:p:366-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.