IDEAS home Printed from https://ideas.repec.org/p/lan/wpaper/104825642.html
   My bibliography  Save this paper

Weather shocks, maize yields and adaptation in rural China

Author

Listed:
  • Ma Jiliang Jiliang
  • Jean-Francois Maystadt

Abstract

Based on panel household data collected between 2004 and 2010, we assess the impact of weather shocks on maize yields in the two main producing regions in China, the Northern spring maize zone and the Yellow-Huai Valley summer maize zone. Temperature, drought, wet conditions, and precipitations have detrimental effects on maize yields in the two maize zones. Nonetheless, the magnitude of those effects appears to be low compared to other parts of the world. Adaptation seems to be key in the region where the largest impact is estimated. On the contrary, the lower impact found in the other region, the Yellow-Huai Valley summer maize zone, is low but likely to intensify.

Suggested Citation

  • Ma Jiliang Jiliang & Jean-Francois Maystadt, 2016. "Weather shocks, maize yields and adaptation in rural China," Working Papers 104825642, Lancaster University Management School, Economics Department.
  • Handle: RePEc:lan:wpaper:104825642
    as

    Download full text from publisher

    File URL: http://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/lums/economics/working-papers/LancasterWP2016_001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiang & Takahashi, Taro & Suzuki, Nobuhiro & Kaiser, Harry M., 2011. "The impact of climate change on maize yields in the United States and China," Agricultural Systems, Elsevier, vol. 104(4), pages 348-353, April.
    2. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    3. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    4. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    5. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    6. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    7. Zhou, Zhang-Yue & Tian, Wei-Ming, 2006. "Evolving trends of grain production in China," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 14.
    8. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    10. Emanuele Massetti & Robert Mendelsohn & Shun Chonabayashi, 2014. "Using Degree Days to Value Farmland," CESifo Working Paper Series 5148, CESifo.
    11. A. Nadler & Paul Bullock, 2011. "Long-term changes in heat and moisture related to corn production on the Canadian Prairies," Climatic Change, Springer, vol. 104(2), pages 339-352, January.
    12. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    13. Marchiori, Luca & Maystadt, Jean-François & Schumacher, Ingmar, 2012. "The impact of weather anomalies on migration in sub-Saharan Africa," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 355-374.
    14. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    15. Neville Nicholls, 1997. "Increased Australian wheat yield due to recent climate trends," Nature, Nature, vol. 387(6632), pages 484-485, May.
    16. Meng, Erika C.H. & Hu, Ruifa & Shi, Xiaohua & Zhang, Shihuang, 2006. "Maize in China: Production Systems, Constraints, and Research Priorities," Maize Production Systems Papers 7648, CIMMYT: International Maize and Wheat Improvement Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    2. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    3. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    4. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    5. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    6. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    7. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    8. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    9. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    10. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    11. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    12. Cattaneo, Cristina & Peri, Giovanni, 2016. "The migration response to increasing temperatures," Journal of Development Economics, Elsevier, vol. 122(C), pages 127-146.
    13. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    14. Rémi Generoso & Cécile Couharde & Olivier Damette & Kamiar Mohaddes, 2020. "The Growth Effects of El Niño and La Niña: Local Weather Conditions Matter," Annals of Economics and Statistics, GENES, issue 140, pages 83-126.
    15. Zaveri, Esha D. & Russ, Jason & Damania, Richard, 2017. "Drenched Fields and Parched Farms: Evidence along the Extensive and Intensive Margins," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258409, Agricultural and Applied Economics Association.
    16. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    17. Chiara Falco & Marzio Galeotti & Alessandro Olper, 2018. "Climate change and Migration: Is Agriculture the Main Channel?," IEFE Working Papers 100, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    18. García-León, David, 2015. "Weather and Income: Lessons from the Main European Regions," Climate Change and Sustainable Development 202979, Fondazione Eni Enrico Mattei (FEEM).
    19. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    20. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.

    More about this item

    Keywords

    Weather shocks; Adaptation; Maize yield; China;
    All these keywords.

    JEL classification:

    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lan:wpaper:104825642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giorgio Motta (email available below). General contact details of provider: https://edirc.repec.org/data/delanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.