IDEAS home Printed from https://ideas.repec.org/p/ipt/wpaper/201006.html
   My bibliography  Save this paper

The More You Spend, the More You Get? The Effects of R&D and Capital Expenditures on the Patenting Activities of Biotechnology Firms

Author

Listed:
  • Roberta Piergiovanni

    () (Istat-Ufficio Regionale per lEmilia-Romagna)

  • Enrico Santarelli

    ()

Abstract

This paper provides evidence on the mechanisms influencing the patent output of a sample of biotechnology firms from the input of indirect knowledge acquired from capital expenditures and direct knowledge from in-house R&D. Statistical models of counts are used to analyse the relationship between patent applications and R&D investment and capital expenditures. It focuses on biotechnology in the period 2002-2007 and is based on a unique data set drawn from various sources including the EU Industrial R&D Investment Scoreboard, the European Patent Office (EPO), the US Patent and Trademark Office (USPTO), and the World Intellectual Property Organisation (WIPO/PCT). The statistical models employed in the paper are Poisson distribution generalisations with the actual distribution of patent counts fitting the negative binomial distribution and gamma distribution very well. Findings support the idea that capital expenditures taken as equivalent to technological change embodied in new machinery and capital equipment - may also play a crucial role in the development of new patentable items from scientific companies. For EPO patents, this role appears even more important than that played by R&D investment. The overall picture emerging from our analysis of the determinants of patenting in biotechnology is that the innovation process involves a well-balanced combination of inputs from both R&D and new machinery and capital equipment.

Suggested Citation

  • Roberta Piergiovanni & Enrico Santarelli, 2010. "The More You Spend, the More You Get? The Effects of R&D and Capital Expenditures on the Patenting Activities of Biotechnology Firms," JRC Working Papers on Corporate R&D and Innovation 2010-06, Joint Research Centre (Seville site).
  • Handle: RePEc:ipt:wpaper:201006
    as

    Download full text from publisher

    File URL: https://iri.jrc.ec.europa.eu/documents/10180/63729f4c-a36d-40ac-b597-a1ef5e6a899b
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Santarelli, Enrico & Piergiovanni, Roberta, 1996. "Analyzing literature-based innovation output indicators: the Italian experience," Research Policy, Elsevier, vol. 25(5), pages 689-711, August.
    2. de Rassenfosse, Gaetan & van Pottelsberghe de la Potterie, Bruno, 2009. "A policy insight into the R&D-patent relationship," Research Policy, Elsevier, vol. 38(5), pages 779-792, June.
    3. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    4. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2013. "The Effects of Future Capital Investment and R&D Expenditures on Firms' Liquidity," Review of International Economics, Wiley Blackwell, vol. 21(3), pages 459-474, August.
    5. Pontus Braunerhjelm & Ding Ding & Per Thulin, 2018. "The knowledge spillover theory of intrapreneurship," Small Business Economics, Springer, vol. 51(1), pages 1-30, June.
    6. Manuel Trajtenberg & Gil Shiff & Ran Melamed, 2009. "The "Names Game": Harnessing Inventors, Patent Data for Economic Research," Annals of Economics and Statistics, GENES, issue 93-94, pages 67-77.
    7. Mariacristina Piva & Marco Vivarelli, 2007. "Is demand-pulled innovation equally important in different groups of firms?," Cambridge Journal of Economics, Oxford University Press, vol. 31(5), pages 691-710, September.
    8. repec:fth:harver:1473 is not listed on IDEAS
    9. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    10. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    11. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    12. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    13. Hercowitz, Zvi, 1998. "The 'embodiment' controversy: A review essay," Journal of Monetary Economics, Elsevier, vol. 41(1), pages 217-224, February.
    14. Kleinknecht, Alfred, 1987. "Measuring R&D in Small Firms: How Much Are We Missing?," Journal of Industrial Economics, Wiley Blackwell, vol. 36(2), pages 253-256, December.
    15. Cincera, Michele, 1997. "Patents, R&D, and Technological Spillovers at the Firm Level: Some Evidence from Econometric Count Models for Panel Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 265-280, May-June.
    16. Diego Comin & Bart Hobijn, 2010. "An Exploration of Technology Diffusion," American Economic Review, American Economic Association, vol. 100(5), pages 2031-2059, December.
    17. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    18. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    19. Hulten, Charles R, 1992. "Growth Accounting When Technical Change Is Embodied in Capital," American Economic Review, American Economic Association, vol. 82(4), pages 964-980, September.
    20. Heinzl, Harald & Mittlbock, Martina, 2003. "Pseudo R-squared measures for Poisson regression models with over- or underdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 253-271, October.
    21. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    22. Gregory Tassey, 2010. "Rationales and mechanisms for revitalizing US manufacturing R&D strategies," The Journal of Technology Transfer, Springer, vol. 35(3), pages 283-333, June.
    23. Diego A. Comin & Martí Mestieri, 2010. "An Intensive Exploration of Technology Diffusion," NBER Working Papers 16379, National Bureau of Economic Research, Inc.
    24. Martin Carree & Antonio Malva & Enrico Santarelli, 2014. "The contribution of universities to growth: empirical evidence for Italy," The Journal of Technology Transfer, Springer, vol. 39(3), pages 393-414, June.
    25. Hopkins, Michael M. & Martin, Paul A. & Nightingale, Paul & Kraft, Alison & Mahdi, Surya, 2007. "The myth of the biotech revolution: An assessment of technological, clinical and organisational change," Research Policy, Elsevier, vol. 36(4), pages 566-589, May.
    26. Thursby, Jerry & Fuller, Anne W. & Thursby, Marie, 2009. "US faculty patenting: Inside and outside the university," Research Policy, Elsevier, vol. 38(1), pages 14-25, February.
    27. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    28. van Pottelsberghe de la Potterie, Bruno, 2011. "Europe should stop taxing innovation," World Patent Information, Elsevier, vol. 33(1), pages 16-22, March.
    29. Lionel Nesta & Pier-Paolo Saviotti, 2006. "Firm knowledge and market value in biotechnology," Industrial and Corporate Change, Oxford University Press, vol. 15(4), pages 625-652, August.
    30. Enrico Santarelli & Francesca Lotti, 2008. "Innovative Output, Productivity and Profitability. A Test Comparing USPTO and EPO Data," Industry and Innovation, Taylor & Francis Journals, vol. 15(4), pages 393-409.
    31. David B. Audretsch, 1995. "Innovation and Industry Evolution," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011468, September.
    32. Scherer, F M, 1982. "Demand-Pull and Technological Invention: Schmookler Revisited," Journal of Industrial Economics, Wiley Blackwell, vol. 30(3), pages 225-237, March.
    33. Deng, Yi, 2007. "The effects of patent regime changes: A case study of the European patent office," International Journal of Industrial Organization, Elsevier, vol. 25(1), pages 121-138, February.
    34. Grid Thoma & Salvatore Torrisi, 2007. "Creating Powerful Indicators for Innovation Studies with Approximate Matching Algorithms. A test based on PATSTAT and Amadeus databases," KITeS Working Papers 211, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Dec 2007.
    35. Crepon, Bruno & Duguet, Emmanuel, 1997. "Estimating the Innovation Function from Patent Numbers: GMM on Count Panel Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 243-263, May-June.
    36. Santamara, Llus & Nieto, Mara Jess & Barge-Gil, Andrs, 2009. "Beyond formal R&D: Taking advantage of other sources of innovation in low- and medium-technology industries," Research Policy, Elsevier, vol. 38(3), pages 507-517, April.
    37. Maskus, Keith E. & McDaniel, Christine, 1999. "Impacts of the Japanese patent system on productivity growth," Japan and the World Economy, Elsevier, vol. 11(4), pages 557-574, December.
    38. Arora, Ashish & Gambardella, Alfonso, 1990. "Complementarity and External Linkages: The Strategies of the Large Firms in Biotechnology," Journal of Industrial Economics, Wiley Blackwell, vol. 38(4), pages 361-379, June.
    39. Charles R. Hulten, 1992. "Growth Accounting When Technical Change is Embodied in Capital," NBER Working Papers 3971, National Bureau of Economic Research, Inc.
    40. Raffo, Julio & Lhuillery, Stéphane, 2009. "How to play the "Names Game": Patent retrieval comparing different heuristics," Research Policy, Elsevier, vol. 38(10), pages 1617-1627, December.
    41. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Santarelli & Hien Thu Tran, 2017. "Young innovative companies: Are they high performers in transition economies? Evidence for Vietnam," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1052-1076, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harabi, Najib, 1994. "Technischer Fortschritt in der Schweiz: Empirische Ergebnisse aus industrieökonomischer Sicht [Technischer Fortschritt in der Schweiz:Empirische Ergebnisse aus industrieökonomischer Sicht]," MPRA Paper 6725, University Library of Munich, Germany.
    2. Pellegrino, Gabriele & Piva, Mariacristina & Vivarelli, Marco, 2012. "Young firms and innovation: A microeconometric analysis," Structural Change and Economic Dynamics, Elsevier, vol. 23(4), pages 329-340.
    3. Hagedoorn, John & Wang, Ning, 2012. "Is there complementarity or substitutability between internal and external R&D strategies?," Research Policy, Elsevier, vol. 41(6), pages 1072-1083.
    4. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    5. Dziallas, Marisa & Blind, Knut, 2019. "Innovation indicators throughout the innovation process: An extensive literature analysis," Technovation, Elsevier, vol. 80, pages 3-29.
    6. Raquel Ortega‐Argilés & Mariacristina Piva & Marco Vivarelli, 2014. "The transatlantic productivity gap: Is R&D the main culprit?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1342-1371, November.
    7. Sunil Kanwar & Shailu Singh, 2016. "The Innovation-R&D Nexus- Evidence from the Indian Manufacturing Sector," Working papers 265, Centre for Development Economics, Delhi School of Economics.
    8. Gabriele Pellegrino & Mariacristina Piva & Marco Vivarelli, 2014. "How do new entrepreneurs innovate?," DISCE - Quaderni del Dipartimento di Politica Economica ispe0070, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    9. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    10. Andrea Conte & Marco Vivarelli, 2014. "Succeeding in innovation: key insights on the role of R&D and technological acquisition drawn from company data," Empirical Economics, Springer, vol. 47(4), pages 1317-1340, December.
    11. Ann-Kathrine Ejsing & Ulrich Kaiser & Hans Christian Kongsted & Keld Laursen, 2013. "The Role of University Scientist Mobility for Industrial Innovation," Working Papers 332, University of Zurich, Department of Business Administration (IBW).
    12. Hagedoorn, John & Wang, Ning, 2010. "Is there complementarity or substitutability between internal and external R&D strategies?," MERIT Working Papers 2010-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. de Rassenfosse, Gaétan & Schoen, Anja & Wastyn, Annelies, 2014. "Selection bias in innovation studies: A simple test," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 287-299.
    14. Krafft Jackie & Quatraro Francesco & Colombelli Alessandra, 2011. "High Growth Firms and Technological Knowledge: Do gazelles follow exploration or exploitation strategies?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201114, University of Turin.
    15. Albert N. Link & Cody A. Morris & Martijn van Hasselt, 2019. "The impact of public R&D investments on patenting activity: technology transfer at the U.S. Environmental Protection Agency," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(5), pages 536-546, July.
    16. Dario Guarascio & Mario Pianta & Francesco Bogliacino, 2017. "Export, R&D and New Products: A Model and a Test on European Industries," Economic Complexity and Evolution, in: Andreas Pyka & Uwe Cantner (ed.), Foundations of Economic Change, pages 393-432, Springer.
    17. Cristiano Antonelli, 2011. "The Economic Complexity of Technological Change: Knowledge Interaction and Path Dependence," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 1, Edward Elgar Publishing.
    18. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    19. Emilie-Pauline Gallié & Diègo Legros, 2012. "Firms’ human capital, R&D and innovation: a study on French firms," Empirical Economics, Springer, vol. 43(2), pages 581-596, October.
    20. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.

    More about this item

    Keywords

    Patents; R&D; Capital expenditure; Poisson models; Biotechnology;
    All these keywords.

    JEL classification:

    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
    • L65 - Industrial Organization - - Industry Studies: Manufacturing - - - Chemicals; Rubber; Drugs; Biotechnology; Plastics
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:wpaper:201006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publication Officer). General contact details of provider: http://edirc.repec.org/data/ipjrces.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.