IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/12479.html
   My bibliography  Save this paper

The "Names Game": Harnessing Inventors' Patent Data for Economic Research

Author

Listed:
  • Manuel Trajtenberg
  • Gil Shiff
  • Ran Melamed

Abstract

The goal of this paper is to lay out a methodology and corresponding computer algorithms, that allow us to extract the detailed data on inventors contained in patents, and harness it for economic research. Patent data has long been used in empirical research in economics, and yet the information on the identity (i.e. the names and location) of the patents' inventors has seldom been deployed in a large scale, primarily because of the "who is who" problem: the name of a given inventor may be spelled differently across her/his patents, and the exact same name may correspond to different inventors (i.e. the "John Smith" problem). Given that there are over 2 million patents with 2 inventors per patent on average, the "who is who" problem applies to over 4 million "records", which is obviously too large to tackle manually. We have thus developed an elaborate methodology and computerized procedure to address this problem in a comprehensive way. The end result is a list of 1.6 million unique inventors from all over the world, with detailed data on their patenting histories, their employers, co-inventors, etc. Forty percent of them have more than one patent, and 70,000 have more than 10 patents. We can trace those multiple inventors across time and space, and thus study the causes and consequences of their mobility across countries, regions, and employers. Given the increasing availability of large computerized data sets on individuals, there may be plenty of opportunities to deploy this methodology to other areas of economic research as well.

Suggested Citation

  • Manuel Trajtenberg & Gil Shiff & Ran Melamed, 2006. "The "Names Game": Harnessing Inventors' Patent Data for Economic Research," NBER Working Papers 12479, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:12479
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w12479.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    4. Adam B. Jaffe & Manuel Trajtenberg, 2005. "Patents, Citations, and Innovations: A Window on the Knowledge Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 026260065x, April.
    5. Gerald Marschke, 2006. "The influence of university research on industrial innovation," Proceedings, Federal Reserve Bank of Cleveland.
    6. Lynne G. Zucker & Michael R. Darby, 2014. "Movement of Star Scientists and Engineers and High-Tech Firm Entry," Annals of Economics and Statistics, GENES, issue 115-116, pages 125-175.
    7. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    8. Hoisl, Karin, 2007. "Tracing mobile inventors--The causality between inventor mobility and inventor productivity," Research Policy, Elsevier, vol. 36(5), pages 619-636, June.
    9. Stolpe, Michael, 2001. "Mobility of research workers and knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology," Kiel Working Papers 1038, Kiel Institute for the World Economy (IfW Kiel).
    10. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    11. Scherer, F M, 1982. "Inter-Industry Technology Flows and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 627-634, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trajtenberg, Manuel & Shiff, Gil & Melamed, Ran, 2006. "The ˆNames Game˜: Harnessing Inventors Patent Data for Economic Research," Foerder Institute for Economic Research Working Papers 275702, Tel-Aviv University > Foerder Institute for Economic Research.
    2. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    3. Zhang, Feng & Jiang, Guohua & Cantwell, John A., 2015. "Subsidiary exploration and the innovative performance of large multinational corporations," International Business Review, Elsevier, vol. 24(2), pages 224-234.
    4. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.
    5. Kathryn Rudie Harrigan & Yunzhe Fang, 2020. "The financial benefits of persistently high forward citations," The Journal of Technology Transfer, Springer, vol. 45(2), pages 619-647, April.
    6. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    7. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    8. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2009. "Why Challenge the Ivory Tower? New Evidence on the Basicness of Academic Patents," Kyklos, Wiley Blackwell, vol. 62(4), pages 488-499, November.
    9. Melody H. Chang, 2023. "Cascading innovation: R&D team design and performance implications of mobility," Strategic Management Journal, Wiley Blackwell, vol. 44(5), pages 1218-1253, May.
    10. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    11. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    12. Paul Almeida & Anupama Phene & Sali Li, 2015. "The Influence of Ethnic Community Knowledge on Indian Inventor Innovativeness," Organization Science, INFORMS, vol. 26(1), pages 198-217, February.
    13. Ren� Belderbos & Dieter Somers, 2015. "Do Technology Leaders Deter Inward R&D Investments? Evidence from Regional R&D Location Decisions in Europe," Regional Studies, Taylor & Francis Journals, vol. 49(11), pages 1805-1821, November.
    14. Hoetker, Glenn & Agarwal, Rajshree, 2005. "Death Hurts, But It Isn't Fatal: The Postexit Diffusion of Knowledge Created by Innovative Companies," Working Papers 05-0100, University of Illinois at Urbana-Champaign, College of Business.
    15. Castellani, Davide & Perri, Alessandra & Scalera, Vittoria G., 2022. "Knowledge integration in multinational enterprises: The role of inventors crossing national and organizational boundaries," Journal of World Business, Elsevier, vol. 57(3).
    16. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    17. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    18. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    19. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    20. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.

    More about this item

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:12479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.