IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Probabilistic choice in games: properties of Rosenthal's t-solutions

  • Voorneveld, Mark

    ()

    (Dept. of Economics, Stockholm School of Economics)

In t-solutions, quantal response equilibria based on the linear probability model as introduced in R.W. Rosenthal (1989, Int. J. Game Theory 18, 273-292), choice probabilities are related to the determination of leveling taxes. The set of t-solutions coincides with the set of Nash equilibria of a game with quadratic control costs. Increasing the rationality of the players allows them to successively eliminate higher levels of strictly dominated actions. Moreover, there exists a path of t-solutions linking uniform randomization to Nash equilibrium.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://swopec.hhs.se/hastef/papers/hastef0542.pdf
Download Restriction: no

Paper provided by Stockholm School of Economics in its series SSE/EFI Working Paper Series in Economics and Finance with number 542.

as
in new window

Length: 15 pages
Date of creation: 28 Oct 2003
Date of revision: 31 Oct 2003
Handle: RePEc:hhs:hastef:0542
Contact details of provider: Postal: The Economic Research Institute, Stockholm School of Economics, P.O. Box 6501, 113 83 Stockholm, Sweden
Phone: +46-(0)8-736 90 00
Fax: +46-(0)8-31 01 57
Web page: http://www.hhs.se/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
  2. Mattsson, Lars-Goran & Weibull, Jorgen W., 2002. "Probabilistic choice and procedurally bounded rationality," Games and Economic Behavior, Elsevier, vol. 41(1), pages 61-78, October.
  3. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, June.
  4. Lawrence E. Blume & William R. Zame, 1993. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Game Theory and Information 9309001, EconWPA.
  5. Anderson, Simon P. & Goeree, Jacob K. & Holt, Charles A., 2001. "Minimum-Effort Coordination Games: Stochastic Potential and Logit Equilibrium," Games and Economic Behavior, Elsevier, vol. 34(2), pages 177-199, February.
  6. Jacob K. Goeree & Charles A. Holt, 2000. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," Virginia Economics Online Papers 333, University of Virginia, Department of Economics.
  7. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
  8. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer, vol. 1(1), pages 9-41, June.
  9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
  10. Rosenthal, Robert W, 1989. "A Bounded-Rationality Approach to the Study of Noncooperative Games," International Journal of Game Theory, Springer, vol. 18(3), pages 273-91.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0542. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.