IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Dynamic Homotopy Interpretation of Quantal Response Equilibrium Correspondences

  • Theodore L. Turocy

    (Texas A&M University)

This paper uses properties of the logistic quantal response equilibrium correspondence to compute Nash equilibria in nite games. It is shown that branches of the correspondence may be numerically traversed e ciently and securely. The method can be implemented on a multicomputer, allowing for application to large games. The path followed by the method has an interpretation analogous to Harsanyi and Selten's Tracing Procedure. As an application, it is shown that the principal branch of any quantal response equilibrium correspondence satisfying a monotonicity property converges to the risk-dominant equilibrium in 2x2 games.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/game/papers/0212/0212001.pdf
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0212001.

as
in new window

Length: 26 pages
Date of creation: 02 Dec 2002
Date of revision: 16 Oct 2003
Handle: RePEc:wpa:wuwpga:0212001
Note: Type of Document - PDF; prepared on Linux; pages: 26 ; figures: none
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. KOHLBERG, Elon & MERTENS, Jean-François, . "On the strategic stability of equilibria," CORE Discussion Papers RP -716, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Palfrey, Thomas R. & Goeree, Jacob & Holt, Charles, 2000. "Quantal Response Equilibrium and Overbidding in Private-value Auctions," Working Papers 1073, California Institute of Technology, Division of the Humanities and Social Sciences.
  3. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
  4. Yamamoto, Yoshitsugu, 1993. "A Path-Following Procedure to Find a Proper Equilibrium of Finite Games," International Journal of Game Theory, Springer, vol. 22(3), pages 249-59.
  5. Thomas Palfrey, 2002. "Quantal Response Equilibrium and Overbidding in Private Value Auctions," Theory workshop papers 357966000000000089, UCLA Department of Economics.
  6. Wilson, Robert, 1992. "Computing Simply Stable Equilibria," Econometrica, Econometric Society, vol. 60(5), pages 1039-70, September.
  7. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
  8. Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
  9. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
  10. Anderson, Simon P. & Goeree, Jacob K. & Holt, Charles A., 2001. "Minimum-Effort Coordination Games: Stochastic Potential and Logit Equilibrium," Games and Economic Behavior, Elsevier, vol. 34(2), pages 177-199, February.
  11. Roger B. Myerson, 1977. "Refinements of the Nash Equilibrium Concept," Discussion Papers 295, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  12. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, June.
  13. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer, vol. 1(1), pages 9-41, June.
  14. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
  15. Charles A. Holt & Jacob K. Goeree, 1999. "Stochastic Game Theory: For Playing Games, Not Just for Doing Theory," Virginia Economics Online Papers 306, University of Virginia, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0212001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.