IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Probabilistic Choice in Games: Properties of Rosenthal’s t-Solutions

  • Mark Voorneveld


In t-solutions, quantal response equilibria based on the linear probability model as introduced in R.W. Rosenthal (1989, Int. J. Game Theory 18, 273-292), choice probabilities are related to the determination of leveling taxes. The set of t-solutions coincides with the set of Nash equilibria of a game with quadratic control costs. Increasing the rationality of the players allows them to successively eliminate higher levels of strictly dominated actions. Moreover, there exists a path of t-solutions linking uniform randomization to Nash equilibrium.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 34 (2006)
Issue (Month): 1 (April)
Pages: 105-121

in new window

Handle: RePEc:spr:jogath:v:34:y:2006:i:1:p:105-121
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence E. Blume & William R. Zame, 1993. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Game Theory and Information 9309001, EconWPA.
  2. Rosenthal, Robert W, 1989. "A Bounded-Rationality Approach to the Study of Noncooperative Games," International Journal of Game Theory, Springer, vol. 18(3), pages 273-91.
  3. Jacob K Goeree & Charles A Holt, 2004. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," Levine's Working Paper Archive 618897000000000900, David K. Levine.
  4. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
  5. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer, vol. 1(1), pages 9-41, June.
  6. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
  7. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, June.
  8. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
  9. Mattsson, Lars-Goran & Weibull, Jorgen W., 2002. "Probabilistic choice and procedurally bounded rationality," Games and Economic Behavior, Elsevier, vol. 41(1), pages 61-78, October.
  10. Anderson, Simon P. & Goeree, Jacob K. & Holt, Charles A., 2001. "Minimum-Effort Coordination Games: Stochastic Potential and Logit Equilibrium," Games and Economic Behavior, Elsevier, vol. 34(2), pages 177-199, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:34:y:2006:i:1:p:105-121. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.