IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Developing Median Regression for SURE Models - with Application to 3-Generation Immigrants’ data in Sweden

Listed author(s):
  • Zeebari, Zangin

    (CAFO, Växjö University)

  • Shukur, Ghazi


    (CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology)

In this paper we generalize the median regression method in order to make it applicable to systems of regression equations. Given the existence of proper systemwise medians of the errors from different equations, we apply the weighted median regression with the weights obtained from the covariance matrix of errors from different equations calculated by conventional SURE method. The Seemingly Unrelated Median Regression Equations (SUMRE) method produces results that are more robust than the usual SURE or single equations OLS estimations when the distributions of the dependent variables are not symmetric. Moreover, the estimations of the SUMRE method are also more efficient than those of the cases of single equation median regressions when the cross equations errors are correlated. More precisely, the aim of our SUMRE method is to produce a harmony of existing skewness and correlations of errors in systems of regression equations. A theorem is derived and indicates that even with the lack of statistically significant correlations between the equations, using the SMRE method instead of the SURE method will not damage the estimation of parameters. A Monte Carlo experiment was conducted to investigate the properties of the SUMRE method in situations where the number of equations in the system, number of observations, strength of the correlations of cross equations errors and the departure from the normality distribution of the errors were varied. The results show that, when the cross equations correlations are medium or high and the level of skewness of the errors of the equations are also medium or high, the SUMRE method produces estimators that are more efficient and less biased than the ordinary SURE GLS estimators. Moreover, the estimates of applying the SUMRE method are also more efficient and less biased than the estimates obtained when applying the OLS or single equation median regressions. In addition, our results from an empirical application are in accordance with what we discovered from the simulation study, with respect to the relative gain in efficiency of SUMRE estimators compared to SURE estimators, in the presence of Skewness of error terms.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies in its series Working Paper Series in Economics and Institutions of Innovation with number 183.

in new window

Length: 53 pages
Date of creation: 26 Aug 2009
Handle: RePEc:hhs:cesisp:0183
Contact details of provider: Postal:
CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Phone: +46 8 790 95 63
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  2. Ekberg, Jan & Hammarstedt, Mats & Shukur, Ghazi, 2007. "SUR estimation of earnings differentials between three generations of immigrants and natives," CAFO Working Papers 2007:7, Centre for Labour Market Policy Research (CAFO), School of Business and Economics, Linnaeus University.
  3. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
  4. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
  5. Mats Hammarstedt, 2009. "Intergenerational Mobility and the Earnings Position of First-, Second-, and Third-Generation Immigrants," Kyklos, Wiley Blackwell, vol. 62(2), pages 275-292, 04.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:cesisp:0183. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Vardan Hovsepyan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.