IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00354249.html
   My bibliography  Save this paper

A Methodology For Detecting Breaks In The Mean And Covariance Structure Of Time Series

Author

Listed:
  • Mohamed Boutahar

    () (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - ECM - Ecole Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique - AMU - Aix Marseille Université - EHESS - École des hautes études en sciences sociales)

  • Jamel Jouini

    () (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - ECM - Ecole Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique - AMU - Aix Marseille Université - EHESS - École des hautes études en sciences sociales, FSEGN - Faculté des Sciences Economiques et de Gestion - Université de Carthage)

Abstract

Some structural break techniques defined in the time and frequency domains are presented to explore, at the same time, the empirical evidence of the mean and covariance instability by uncovering regime-shifts in some inflation series. To that effect, we pursue a methodology that combines two approaches; the first is defined in the time domain and is designed to detect mean-shifts, and the second is defined in the frequency domain and is adopted to study the instability problem of the covariance function of the series. The proposed methodology has a double interest since, besides the detection of regime-shifts occasioned in the covariance structure of the series, it allows taking into account the presence of mean-shifts in this series. Note that unlike the works existing in the literature which often adopt a single technique to study the break identification problem, our methodology combines two approaches, parametric and nonparametric, to examine this problem.

Suggested Citation

  • Mohamed Boutahar & Jamel Jouini, 2007. "A Methodology For Detecting Breaks In The Mean And Covariance Structure Of Time Series," Working Papers halshs-00354249, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00354249
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00354249
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00354249/document
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. repec:ebl:ecbull:v:3:y:2007:i:3:p:1-10 is not listed on IDEAS
    3. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    4. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    5. Jamel JOUINI & Mohamed BOUTAHAR, 2007. "wrong estimation of the true number of shifts in structural break models: Theoretical and numerical evidence," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    6. Andrew T. Levin & Jeremy M. Piger, 2003. "Is inflation persistence intrinsic in industrial economies?," Working Papers 2002-023, Federal Reserve Bank of St. Louis.
    7. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
    10. Mohamed Safouane Ben Aissa & Mohamed Boutahar & Jamel Jouini, 2004. "Bai and Perron's and spectral density methods for structural change detection in the US inflation process," Applied Economics Letters, Taylor & Francis Journals, vol. 11(2), pages 109-115.
    11. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
    12. Ahamada, Ibrahim, 2002. "Tests for covariance stationarity and white noise, with an application to Euro/US dollar exchange rate: An approach based on the evolutionary spectral density," Economics Letters, Elsevier, vol. 77(2), pages 177-186, October.
    13. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    14. Pagan, Adrian R. & Schwert, G. William, 1990. "Testing for covariance stationarity in stock market data," Economics Letters, Elsevier, vol. 33(2), pages 165-170, June.
    15. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    16. Bilke, L., 2005. "Break in the Mean and Persistence of Inflation: a Sectoral Analysis of French CPI," Working papers 122, Banque de France.
    17. Jeff Fuhrer & George Moore, 1995. "Inflation Persistence," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 127-159.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00354249. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.