IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00272867.html

Detecting Multiple Breaks in Time Series Covariance Structure: a Nonparametric Approach Based on the Evolutionary Spectral Density

Author

Listed:
  • Ibrahim Ahamada

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Jamel Jouini

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Mohamed Boutahar

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

This article estimates the number of breaks and their locations in the covariance structure of a series based on the evolutionary spectral density and uses some standard information criteria. The adopted approach is non-parametric and does hot privilege a priori any modelling of the series. One carries out a Monte Carlo analysis and an empirical illustration using the daily return series of exchange rate euro/US dollar to support the relevance of the theory and to produce additional insights. The simulation results are globally adequate and show that the criteria having heavy penalty are more accurate in the selection of the number of breaks. The empirical results indicate that the covariance structure of the return series considerably varies between 30 March 2000 and 6 April 2001. The unconditional volatility appears non-constant over this interval.

Suggested Citation

  • Ibrahim Ahamada & Jamel Jouini & Mohamed Boutahar, 2004. "Detecting Multiple Breaks in Time Series Covariance Structure: a Nonparametric Approach Based on the Evolutionary Spectral Density," Post-Print halshs-00272867, HAL.
  • Handle: RePEc:hal:journl:halshs-00272867
    DOI: 10.1080/0003684042000246803
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Russell, Bill, 2011. "Non-stationary inflation and panel estimates of United States short and long-run Phillips curves," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 406-419, September.
    2. Ibrahim Ahamada & Mohamed Boutahar, 2010. "The Power of some Standard tests of stationarity against changes in the unconditional variance," Documents de travail du Centre d'Economie de la Sorbonne 10028, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. An, Pengli & Li, Huajiao & Zhou, Jinsheng & Li, Yang & Sun, Bowen & Guo, Sui & Qi, Yajie, 2020. "Volatility spillover of energy stocks in different periods and clusters based on structural break recognition and network method," Energy, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00272867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.