IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Euclidean preferences

  • Anna Bogomolnaïa

    (Rice University)

  • Jean-François Laslier

    (CECO - Laboratoire d'econometrie de l'école polytechnique - CNRS : UMR7657 - Polytechnique - X)

Cette note est consacrée à la question:Quelle restriction impose-t-on en faisant l'hypothèse qu'un profil de préférences est euclidien en dimension d ? En particulier on démontre qu'un profil de préférences sur I individus et A alternatives peut être représenté par des utilités euclidiennes en dimension d si et seulement si d est supérieur ou égal à min(I,A-1). On décrit aussi les systèmes de points qui permettent de représenter tout profil sur A alternatives, et on donne quelques résultats quand seules les préférences strictes sont considérées.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hal.archives-ouvertes.fr/docs/00/24/29/41/PDF/2004-12-17-198.pdf
Download Restriction: no

Paper provided by HAL in its series Working Papers with number hal-00242941.

as
in new window

Length:
Date of creation: 2004
Date of revision:
Handle: RePEc:hal:wpaper:hal-00242941
Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/hal-00242941/en/
Contact details of provider: Web page: https://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jeffrey Milyo, 1999. "A Problem with Euclidean Preferences in Spatial Models of Politics," Discussion Papers Series, Department of Economics, Tufts University 9920, Department of Economics, Tufts University.
  2. Gevers, L. & Jacquemin, J. C., 1987. "Redistributive taxation, majority decisions and the minmax set," European Economic Review, Elsevier, vol. 31(1-2), pages 202-211.
  3. McKelvey, Richard D., 1976. "Intransitivities in multidimensional voting models and some implications for agenda control," Journal of Economic Theory, Elsevier, vol. 12(3), pages 472-482, June.
  4. Philippe De Donder, 2000. "Majority voting solution concepts and redistributive taxation," Social Choice and Welfare, Springer, vol. 17(4), pages 601-627.
  5. Davis, Otto A & DeGroot, Morris H & Hinich, Melvin J, 1972. "Social Preference Orderings and Majority Rule," Econometrica, Econometric Society, vol. 40(1), pages 147-57, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242941. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.