IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00242941.html
   My bibliography  Save this paper

Euclidean preferences

Author

Listed:
  • Anna Bogomolnaia

    (Rice University [Houston])

  • Jean-François Laslier

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

Abstract

This note is devoted to the question: How restrictive is the assumption that preferences be Euclidean in d dimensions. In particular it is proven that a preference profile with I individuals and A alternatives can be represented by Euclidean utilities with d dimensions if and only if d=min(I,A-1). The paper also describes the systems of A points which allow for the representation of any profile over A alternatives, and provides some results when only strict preferences are considered.

Suggested Citation

  • Anna Bogomolnaia & Jean-François Laslier, 2004. "Euclidean preferences," Working Papers hal-00242941, HAL.
  • Handle: RePEc:hal:wpaper:hal-00242941
    Note: View the original document on HAL open archive server: https://hal.science/hal-00242941
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00242941/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bailey, Michael, 2001. "Ideal Point Estimation with a Small Number of Votes: A Random-Effects Approach," Political Analysis, Cambridge University Press, vol. 9(3), pages 192-210, January.
    2. Gevers, L. & Jacquemin, J. C., 1987. "Redistributive taxation, majority decisions and the minmax set," European Economic Review, Elsevier, vol. 31(1-2), pages 202-211.
    3. Stokes, Donald E., 1963. "Spatial Models of Party Competition," American Political Science Review, Cambridge University Press, vol. 57(2), pages 368-377, June.
    4. Rabinowitz, George & Macdonald, Stuart Elaine, 1989. "A Directional Theory of Issue Voting," American Political Science Review, Cambridge University Press, vol. 83(1), pages 93-121, March.
    5. McKelvey, Richard D., 1976. "Intransitivities in multidimensional voting models and some implications for agenda control," Journal of Economic Theory, Elsevier, vol. 12(3), pages 472-482, June.
    6. Milyo, Jeffrey, 2000. "A problem with Euclidean preferences in spatial models of politics," Economics Letters, Elsevier, vol. 66(2), pages 179-182, February.
    7. Laslier, Jean-François, 2006. "Spatial Approval Voting," Political Analysis, Cambridge University Press, vol. 14(2), pages 160-185, April.
    8. Steven J. Brams & Michael A. Jones & D. Marc Kilgour, 2002. "Single-Peakedness and Disconnected Coalitions," Journal of Theoretical Politics, , vol. 14(3), pages 359-383, July.
    9. Philippe De Donder, 2000. "Majority voting solution concepts and redistributive taxation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(4), pages 601-627.
    10. Davis, Otto A & DeGroot, Morris H & Hinich, Melvin J, 1972. "Social Preference Orderings and Majority Rule," Econometrica, Econometric Society, vol. 40(1), pages 147-157, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Henry & Ismael Mourifié, 2013. "Euclidean Revealed Preferences: Testing The Spatial Voting Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 650-666, June.
    2. Scott Moser & John W. Patty & Elizabeth Maggie Penn, 2009. "The Structure of Heresthetical Power," Journal of Theoretical Politics, , vol. 21(2), pages 139-159, April.
    3. Azrieli, Yaron, 2011. "Axioms for Euclidean preferences with a valence dimension," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 545-553.
    4. Vicki Knoblauch, 2008. "Recognizing a Single-Issue Spatial Election," Working papers 2008-26, University of Connecticut, Department of Economics.
    5. ,, 2010. "Rationalizable voting," Theoretical Economics, Econometric Society, vol. 5(1), January.
    6. Greco, Salvatore & Ishizaka, Alessio & Resce, Giuliano & Torrisi, Gianpiero, 2020. "Measuring well-being by a multidimensional spatial model in OECD Better Life Index framework," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    7. Eckert, Daniel & Klamler, Christian, 2010. "An equity-efficiency trade-off in a geometric approach to committee selection," European Journal of Political Economy, Elsevier, vol. 26(3), pages 386-391, September.
    8. Chambers, Christopher P. & Echenique, Federico, 2020. "Spherical preferences," Journal of Economic Theory, Elsevier, vol. 189(C).
    9. Knoblauch, Vicki, 2010. "Recognizing one-dimensional Euclidean preference profiles," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 1-5, January.
    10. Naveen Durvasula, 2022. "Utility-Based Communication Requirements for Stable Matching in Large Markets," Papers 2212.04024, arXiv.org.
    11. Gonczarowski, Yannai A. & Nisan, Noam & Ostrovsky, Rafail & Rosenbaum, Will, 2019. "A stable marriage requires communication," Games and Economic Behavior, Elsevier, vol. 118(C), pages 626-647.
    12. Jiehua Chen & Kirk R. Pruhs & Gerhard J. Woeginger, 2017. "The one-dimensional Euclidean domain: finitely many obstructions are not enough," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 409-432, February.
    13. Eguia, Jon X., 2011. "Foundations of spatial preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 200-205, March.
    14. Josue Ortega & Philipp Hergovich, 2017. "The Strength of Absent Ties: Social Integration via Online Dating," Papers 1709.10478, arXiv.org, revised Sep 2018.
    15. Jiehua Chen & Sven Grottke, 2021. "Small one-dimensional Euclidean preference profiles," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 117-144, July.
    16. Andre Veski & Kaire Põder, 2016. "Strategies in the Tallinn School Choice Mechanism," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 8(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Jackson, 2014. "Location, location, location: the Davis-Hinich model of electoral competition," Public Choice, Springer, vol. 159(1), pages 197-218, April.
    2. Zakharov Alexei, 2005. "Candidate location and endogenous valence," EERC Working Paper Series 05-17e, EERC Research Network, Russia and CIS.
    3. Fabian Gouret & Guillaume Hollard & Stéphane Rossignol, 2011. "An empirical analysis of valence in electoral competition," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(2), pages 309-340, July.
    4. Daniel E. Ingberman & Robert P. Inman, 1987. "The Political Economy of Fiscal Policy," NBER Working Papers 2405, National Bureau of Economic Research, Inc.
    5. Martínez-Mora, Francisco & Puy, M. Socorro, 2014. "The determinants and electoral consequences of asymmetric preferences," European Journal of Political Economy, Elsevier, vol. 33(C), pages 85-97.
    6. Thomas Bräuninger, 2007. "Stability in Spatial Voting Games with Restricted Preference Maximizing," Journal of Theoretical Politics, , vol. 19(2), pages 173-191, April.
    7. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2020. "Arrow on domain conditions: a fruitful road to travel," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(2), pages 237-258, March.
    8. Tovey, Craig A., 2010. "The instability of instability of centered distributions," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 53-73, January.
    9. James Enelow & Melvin Hinisch, 1983. "On Plott's pairwise symmetry condition for majority rule equilibrium," Public Choice, Springer, vol. 40(3), pages 317-321, January.
    10. Canegrati, Emanuele, 2006. "Political Bad Reputation," MPRA Paper 1018, University Library of Munich, Germany.
    11. Justin Buchler, 2011. "The proximity paradox: the legislative agenda and the electoral success of ideological extremists," Public Choice, Springer, vol. 148(1), pages 1-19, July.
    12. Mark Fey, 2008. "Choosing from a large tournament," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(2), pages 301-309, August.
    13. Gallego, Maria & Schofield, Norman, 2017. "Modeling the effect of campaign advertising on US presidential elections when differences across states matter," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 160-181.
    14. Borissov, Kirill & Pakhnin, Mikhail & Puppe, Clemens, 2017. "On discounting and voting in a simple growth model," European Economic Review, Elsevier, vol. 94(C), pages 185-204.
    15. Nicholas R. Miller & Bernard Grofman & Scott L. Feld, 1989. "The Geometry of Majority Rule," Journal of Theoretical Politics, , vol. 1(4), pages 379-406, October.
    16. Jiehua Chen & Sven Grottke, 2021. "Small one-dimensional Euclidean preference profiles," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 117-144, July.
    17. Stuart Elaine Macdonald & George Rabinowitz, 1993. "Direction and Uncertainty in a Model of Issue Voting," Journal of Theoretical Politics, , vol. 5(1), pages 61-87, January.
    18. Pierre-Guillaume Méon, 2006. "Majority voting with stochastic preferences: The whims of a committee are smaller than the whims of its members," Constitutional Political Economy, Springer, vol. 17(3), pages 207-216, September.
    19. Larry Samuelson, 1987. "A test of the revealed-preference phenomenon in congressional elections," Public Choice, Springer, vol. 54(2), pages 141-169, January.
    20. Adrian Deemen, 2014. "On the empirical relevance of Condorcet’s paradox," Public Choice, Springer, vol. 158(3), pages 311-330, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.