IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i1p1-5.html
   My bibliography  Save this article

Recognizing one-dimensional Euclidean preference profiles

Author

Listed:
  • Knoblauch, Vicki

Abstract

A preference profile has a one-dimensional Euclidean representation if it can be derived from an arrangement of individuals and alternatives on a line, with each individual preferring the nearer of each pair of alternatives. We provide a polynomial-time algorithm that determines whether a given preference profile has a one-dimensional Euclidean representation and, if so, constructs one. This result has electoral and mechanism design applications.

Suggested Citation

  • Knoblauch, Vicki, 2010. "Recognizing one-dimensional Euclidean preference profiles," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 1-5, January.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:1-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00061-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miguel Angel Ballester & Guillaume Haeringer, 2006. "A Characterization of Single-Peaked Preferences," Working Papers 273, Barcelona Graduate School of Economics.
    2. Laslier, J.F., 1995. "Multivariate Analysis of Comparison Matrices," Papers 9504, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
    3. Jean-François Laslier, 2003. "Analysing a preference and approval profile," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(2), pages 229-242, March.
    4. Bogomolnaia, Anna & Laslier, Jean-Francois, 2007. "Euclidean preferences," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 87-98, February.
    5. Eguia, Jon X., 2008. "The Foundations of Spatial Preferences," Working Papers 08-01, C.V. Starr Center for Applied Economics, New York University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bredereck, Robert & Chen, Jiehua & Woeginger, Gerhard J., 2016. "Are there any nicely structured preference profiles nearby?," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 61-73.
    2. Azrieli, Yaron, 2011. "Axioms for Euclidean preferences with a valence dimension," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 545-553.
    3. Jon Eguia, 2013. "On the spatial representation of preference profiles," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(1), pages 103-128, January.
    4. Eguia, Jon X., 2011. "Foundations of spatial preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 200-205, March.
    5. repec:spr:sochwe:v:48:y:2017:i:4:d:10.1007_s00355-017-1033-0 is not listed on IDEAS
    6. Jiehua Chen & Kirk R. Pruhs & Gerhard J. Woeginger, 2017. "The one-dimensional Euclidean domain: finitely many obstructions are not enough," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 409-432, February.

    More about this item

    Keywords

    Spatial elections Preference representation Mechanism design;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:1:p:1-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.