IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v47y2011i2p200-205.html
   My bibliography  Save this article

Foundations of spatial preferences

Author

Listed:
  • Eguia, Jon X.

Abstract

Abstract I provide an axiomatic foundation for the assumption of specific utility functions in a multidimensional spatial model, endogenizing the spatial representation of the set of alternatives. Given a set of objects with multiple attributes, I find simple necessary and sufficient conditions on preferences such that there exists a mapping of the set of objects into a Euclidean space where the utility function of the agent is linear city block, quadratic Euclidean, or more generally, it is the [delta] power of one of Minkowski (1886) metric functions. In a society with multiple agents I characterize the set of preferences that are representable by weighted linear city block utility functions, and I discuss how the result extends to other Minkowski utility functions.

Suggested Citation

  • Eguia, Jon X., 2011. "Foundations of spatial preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 200-205, March.
  • Handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:200-205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406811000292
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    2. Kramer, Gerald H., 1977. "A dynamical model of political equilibrium," Journal of Economic Theory, Elsevier, vol. 16(2), pages 310-334, December.
    3. Richter, Marcel K. & Wong, K.-C.Kam-Chau, 2004. "Concave utility on finite sets," Journal of Economic Theory, Elsevier, vol. 115(2), pages 341-357, April.
    4. McKelvey, Richard D & Schofield, Norman, 1987. "Generalized Symmetry Conditions at a Core Point," Econometrica, Econometric Society, vol. 55(4), pages 923-933, July.
    5. McKelvey, Richard D, 1979. "General Conditions for Global Intransitivities in Formal Voting Models," Econometrica, Econometric Society, vol. 47(5), pages 1085-1112, September.
    6. Kannai, Yakar, 1977. "Concavifiability and constructions of concave utility functions," Journal of Mathematical Economics, Elsevier, vol. 4(1), pages 1-56, March.
    7. Degan, Arianna & Merlo, Antonio, 2009. "Do voters vote ideologically?," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1868-1894, September.
    8. Marcello D’Agostino & Valentino Dardanoni, 2009. "What’s so special about Euclidean distance?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 211-233, August.
    9. Barbera Salvador & Gul Faruk & Stacchetti Ennio, 1993. "Generalized Median Voter Schemes and Committees," Journal of Economic Theory, Elsevier, vol. 61(2), pages 262-289, December.
    10. Kalandrakis, Tasos, 2010. "Rationalizable voting," Theoretical Economics, Econometric Society, vol. 5(1), January.
    11. Bogomolnaia, Anna & Laslier, Jean-Francois, 2007. "Euclidean preferences," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 87-98, February.
    12. Azrieli, Yaron, 2009. "Characterization of multidimensional spatial models of elections with a valence dimension," MPRA Paper 14513, University Library of Munich, Germany.
    13. Wendell, Richard E & Thorson, Stuart J, 1974. "Some Generalizations of Social Decisions under Majority Rule," Econometrica, Econometric Society, vol. 42(5), pages 893-912, September.
    14. Knoblauch, Vicki, 2010. "Recognizing one-dimensional Euclidean preference profiles," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 1-5, January.
    15. McKelvey, Richard D., 1976. "Intransitivities in multidimensional voting models and some implications for agenda control," Journal of Economic Theory, Elsevier, vol. 12(3), pages 472-482, June.
    16. Norman Schofield, 2007. "The Mean Voter Theorem: Necessary and Sufficient Conditions for Convergent Equilibrium," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 965-980.
    17. Davis, Otto A & DeGroot, Morris H & Hinich, Melvin J, 1972. "Social Preference Orderings and Majority Rule," Econometrica, Econometric Society, vol. 40(1), pages 147-157, January.
    18. Rae, Douglas & Taylor, Michael, 1971. "Decision Rules and Policy Outcomes," British Journal of Political Science, Cambridge University Press, vol. 1(01), pages 71-90, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azrieli, Yaron, 2011. "Axioms for Euclidean preferences with a valence dimension," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 545-553.
    2. Greco, Salvatore & Ishizaka, Alessio & Resce, Giuliano & Torrisi, Gianpiero, 2017. "Measuring well-being by a multidimensional spatial model in OECD Better Life Index framework," MPRA Paper 83526, University Library of Munich, Germany.
    3. Martínez-Mora Francisco & Puy M. Socorro, 2012. "Asymmetric Single-peaked Preferences," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:2:p:200-205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.