IDEAS home Printed from
   My bibliography  Save this paper

Distributed Learning in Hierarchical Networks


  • Hélène Le Cadre

    () (Laboratoire Information, Modèles, Apprentissage [Gif-sur-Yvette] - CEA)

  • Jean-Sébastien Bedo

    () (Orange Labs [Paris] - Telecom Orange)


In this article, we propose distributed learning based approaches to study the evolution of a decentralized hierarchical system, an illustration of which is the smart grid. Smart grid management requires the control of non-renewable energy production and the inegration of renewable energies which might be highly unpredictable. Indeed, their production levels rely on uncontrolable factors such as sunshine, wind strength, etc. First, we derive optimal control strategies on the non-renewable energy productions and compare competitive learning algorithms to forecast the energy needs of the end users. Second, we introduce an online learning algorithm based on regret minimization enabling the agents to forecast the production of renewable energies. Additionally, we define organizations of the market promoting collaborative learning which generate higher performance for the whole smart grid than full competition.

Suggested Citation

  • Hélène Le Cadre & Jean-Sébastien Bedo, 2012. "Distributed Learning in Hierarchical Networks," Post-Print hal-00740905, HAL.
  • Handle: RePEc:hal:journl:hal-00740905
    Note: View the original document on HAL open archive server:

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, January.
    3. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Algorithmic Game Theory; Coalition; Distributed Learning; Regret;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00740905. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.