IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2013.41.html
   My bibliography  Save this paper

Mitigation and Solar Radiation Management in Climate Change Policies

Author

Listed:
  • Vasiliki Manousi

    (Department of International and European Economic Studies, Athens University of Economics and Business)

  • Anastasios Xepapadeas

    (Department of International and European Economic Studies, Athens University of Economics and Business)

Abstract

We couple a spatially homogeneous energy balance climate model with an economic growth model which incorporates two potential policies against climate change: mitigation, which is the traditional policy, and geoengineering. We analyze the optimal policy mix of geoengineering and mitigation in both a cooperative and a noncooperative framework, in which we study open loop and feedback solutions. Our results suggests that greenhouse gas accumulation is relatively higher when geoengineering policies are undertaken, and that at noncooperative solutions incentives for geoengineering are relative stronger. A disruption of geoengineering efforts at a steady state will cause an upward jump in global temperature.

Suggested Citation

  • Vasiliki Manousi & Anastasios Xepapadeas, 2013. "Mitigation and Solar Radiation Management in Climate Change Policies," Working Papers 2013.41, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2013.41
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2013-041.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Boucekkine, Raouf & Camacho, Carmen & Zou, Benteng, 2009. "Bridging The Gap Between Growth Theory And The New Economic Geography: The Spatial Ramsey Model," Macroeconomic Dynamics, Cambridge University Press, vol. 13(1), pages 20-45, February.
    2. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    3. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, April.
    4. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    5. Gramstad, Kjetil & Tjøtta, Sigve, 2010. "Climate Engineering: Cost benefit and beyond," Working Papers in Economics 05/10, University of Bergen, Department of Economics.
    6. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    7. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    8. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    9. Brock, William & Engström, Gustav & Xepapadeas, Anastasios, 2014. "Spatial climate-economic models in the design of optimal climate policies across locations," European Economic Review, Elsevier, vol. 69(C), pages 78-103.
    10. Scott Barrett, 2008. "The Incredible Economics of Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(1), pages 45-54, January.
    11. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A.J. & Mäler, K-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Other publications TiSEM 40605796-65cd-476f-8e92-7, Tilburg University, School of Economics and Management.
    12. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    13. Xepapadeas, A. P., 1992. "Environmental policy design and dynamic nonpoint-source pollution," Journal of Environmental Economics and Management, Elsevier, vol. 23(1), pages 22-39, July.
    14. van der Ploeg, F. & de Zeeuw, A.J., 1990. "International aspects of pollution control," Other publications TiSEM 2a1900cf-0e05-459e-8c68-a, Tilburg University, School of Economics and Management.
    15. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    16. van der Ploeg, F. & de Zeeuw, A.J., 1992. "International aspects of pollution control," Other publications TiSEM 5d08aa40-9b59-4bac-811a-b, Tilburg University, School of Economics and Management.
    17. Tahvonen Olli & Kuuluvainen Jari, 1993. "Economic Growth, Pollution, and Renewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 101-118, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vassiliki Manoussi & Anastasios Xepapadeas, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," DEOS Working Papers 1408, Athens University of Economics and Business.
    2. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    3. Brock, William A. & Engström, Gustav & Grass, Dieter & Xepapadeas, Anastasios, 2013. "Energy balance climate models and general equilibrium optimal mitigation policies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2371-2396.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasios Xepapadeas, 2022. "On the optimal management of environmental stock externalities," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(24), pages 2202679119-, June.
    2. Engelbert Dockner & Florian Wagener, 2014. "Markov perfect Nash equilibria in models with a single capital stock," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 585-625, August.
    3. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2018. "Commitment-Based Equilibrium Environmental Strategies Under Time-Dependent Absorption Efficiency," Group Decision and Negotiation, Springer, vol. 27(2), pages 235-249, April.
    4. Kogan, Konstantin & Chernonog, Tatyana, 2019. "Competition under industry-stock-driven prevailing market price: Environmental consequences and the effect of uncertainty," European Journal of Operational Research, Elsevier, vol. 276(3), pages 929-946.
    5. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    6. Akihiko Yanase & Keita Kamei, 2022. "Dynamic Game of International Pollution Control with General Oligopolistic Equilibrium: Neary Meets Dockner and Long," Dynamic Games and Applications, Springer, vol. 12(3), pages 751-783, September.
    7. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    8. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi & Ted Loch-Temzelides & Cristiano Ricci, 2025. "An integral transformation approach to differential games: a climate model application," LIDAM Discussion Papers IRES 2025001, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    9. William Brock & Anastasios Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," DEOS Working Papers 1508, Athens University of Economics and Business.
    10. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.
    11. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    12. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    13. William Brock & Anastasios Xepapadeas, 2020. "Spatial Environmental and Resource Economics," DEOS Working Papers 2002, Athens University of Economics and Business.
    14. Buccella, Domenico & Fanti, Luciano & Gori, Luca, 2021. "To abate, or not to abate? A strategic approach on green production in Cournot and Bertrand duopolies," Energy Economics, Elsevier, vol. 96(C).
    15. Jeroen C.J.M. van den Bergh & Peter Nijkamp, 1997. "Optimal Growth, Coordination and Sustainability in the Spatial Economy," Tinbergen Institute Discussion Papers 97-104/3, Tinbergen Institute.
    16. Thomas Aronsson & Kenneth Backlund & Karl-Gustav Löfgren, 2001. "International Cooperation over Green Taxes: On the Impossibility of Achieving a Probability-One Gain," CESifo Working Paper Series 567, CESifo.
    17. Nkuiya, Bruno, 2015. "Transboundary pollution game with potential shift in damages," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 1-14.
    18. Eric Bahel, 2018. "Cooperation and Subgame Perfect Equilibria in Global Pollution Problems with Critical Threshold," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 457-481, June.
    19. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    20. Benchekroun, H. & Ray Chaudhuri, A., 2010. "'The Voracity Effect' and Climate Change : The Impact of Clean Technologies," Other publications TiSEM 3c4910ac-a5dd-4130-9912-f, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Climate Change; Mitigation; Geoengineering; Cooperation; Differential Game; Open Loop - Feedback Nash Equilibrium;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2013.41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai The email address of this maintainer does not seem to be valid anymore. Please ask Alberto Prina Cerai to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.