IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/1323.html
   My bibliography  Save this paper

Mitigation and Solar Radiation Management in Climate Change Policies

Author

Listed:
  • Vasiliki Manousi
  • Anastasios Xepapadeas

Abstract

We couple a spatially homogeneous energy balance climate model with an economic growth model which incorporates two potential policies against climate change: mitigation, which is the traditional policy, and geoengineering. We analyze the optimal policy mix of geoengineering and mitigation in both a cooperative and a noncooperative framework, in which we study open loop and feedback solutions. Our results suggests that greenhouse gas accumulation is relatively higher when geoengineering policies are undertaken, and that at noncooperative solutions incentives for geoengineering are relative stronger. A disruption of geoengineering efforts at a steady state will cause an upward jump in global temperature.

Suggested Citation

  • Vasiliki Manousi & Anastasios Xepapadeas, "undated". "Mitigation and Solar Radiation Management in Climate Change Policies," DEOS Working Papers 1323, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:1323
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/Mitigation.and.Solar.Radiation.Management.pdf
    File Function: First version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    2. Boucekkine, Raouf & Camacho, Carmen & Zou, Benteng, 2009. "Bridging The Gap Between Growth Theory And The New Economic Geography: The Spatial Ramsey Model," Macroeconomic Dynamics, Cambridge University Press, vol. 13(01), pages 20-45, February.
    3. Gramstad, Kjetil & Tjøtta, Sigve, 2010. "Climate engineering: cost benefit and beyond," MPRA Paper 27302, University Library of Munich, Germany.
    4. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    5. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    6. Tahvonen Olli & Kuuluvainen Jari, 1993. "Economic Growth, Pollution, and Renewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 101-118, March.
    7. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    8. Scott Barrett, 2008. "The Incredible Economics of Geoengineering," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(1), pages 45-54, January.
    9. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    10. Xepapadeas, A. P., 1992. "Environmental policy design and dynamic nonpoint-source pollution," Journal of Environmental Economics and Management, Elsevier, vol. 23(1), pages 22-39, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brock, William A. & Engström, Gustav & Grass, Dieter & Xepapadeas, Anastasios, 2013. "Energy balance climate models and general equilibrium optimal mitigation policies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2371-2396.

    More about this item

    Keywords

    Climate change; mitigation; geoengineering; cooperation; differential game; open loop - feedback Nash equilibrium;

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:1323. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekaterini Glynou). General contact details of provider: http://edirc.repec.org/data/diauegr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.