IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/1408.html

Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric

Author

Listed:
  • Vassiliki Manoussi
  • Anastasios Xepapadeas

Abstract

We study a dynamic game of climate policy design in terms of emissions and solar radiation management (SRM) involving two heterogeneous regions or countries. Countries emit greenhouse gasses (GHGs), and can block incoming radiation by unilateral SRM activities, thus reducing global temperature. Heterogeneity is modelled in terms of the social cost of SRM, the environmental damages due to global warming, the productivity of emissions in terms of generating private benefits, the rate of impatience, and the private cost of geoengineering. We determine the impact of asymmetry on mitigation and SRM activities, concentration of GHGs, and global temperature, and we examine whether a tradeoff actually emerges between mitigation and SRM. Our results could provide some insights into a currently emerging debate regarding mitigation and SRM methods to control climate change, especially since asymmetries seem to play an important role in affecting incentives for cooperation or unilateral actions.

Suggested Citation

  • Vassiliki Manoussi & Anastasios Xepapadeas, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," DEOS Working Papers 1408, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:1408
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/Mitigation_SRM_Asymmetric(2September2014).pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louis-Gaëtan Giraudet & Céline Guivarch, 2018. "Asymmetric impacts and over-provision of public goods," CIRED Working Papers hal-01960318, HAL.
    2. Emmerling, Johannes & Manoussi, Vassiliki & Xepapadeas, Anastasios, "undated". "Climate Engineering under Deep Uncertainty and Heterogeneity," MITP: Mitigation, Innovation and Transformation Pathways 244329, Fondazione Eni Enrico Mattei (FEEM).
    3. Heyen, Daniel, 2016. "Strategic conflicts on the horizon: R&D incentives for environmental technologies," LSE Research Online Documents on Economics 68104, London School of Economics and Political Science, LSE Library.
    4. Heyen, Daniel, 2015. "Strategic Conflicts on the Horizon: R&D Incentives for Environmental Technologies," Working Papers 0584, University of Heidelberg, Department of Economics.
    5. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    6. Daniel Heyen, 2016. "Strategic Conflicts On The Horizon: R&D Incentives For Environmental Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-27, November.
    7. repec:sae:envval:v:25:y:2016:i:1:p:29-49 is not listed on IDEAS
    8. Emmerling, Johannes & Tavoni, Massimo, "undated". "Quantifying Non-cooperative Climate Engineering," MITP: Mitigation, Innovation and Transformation Pathways 266289, Fondazione Eni Enrico Mattei (FEEM).
    9. Anastasios Xepapadeas & Athanasios Yannacopoulos, 2018. "Spatially Structured Deep Uncertainty, Robust Control, and Climate Change Policies," DEOS Working Papers 1807, Athens University of Economics and Business.
    10. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:1408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.