IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2024_02.html
   My bibliography  Save this paper

The Effect of Face Masks on Covid Transmission: A Meta-Analysis

Author

Listed:
  • Martina Luskova

    (Institute of Economic Studies at Faculty of Social Sciences, Charles University, Prague)

Abstract

The effect of face masks on Covid-19 transmission is crucial for the health of populations. The effectiveness of face masks in reducing the transmission of Covid-19 varies across primary evidence. To perform a quantitative meta-analysis, we collected 258 estimates from 44 primary studies together with more than 30 variables reflecting the differences among these studies. We examine publication bias by implementing various statistical tests, revealing mild evidence for the phenomenon. Our contribution to other meta-analyses on this topic involves the use of Bayesian and Frequentist model averaging to identify the drivers behind the heterogeneity of the estimates. The results indicate that temperature, geographical latitude, and panel data structure increase the risk of transmission associated with maskwearing. Furthermore, a positive effect is identified for the healthcare setup. In contrast, wearing masks during aerosol-generating procedures decreases the risk of transmission.

Suggested Citation

  • Martina Luskova, 2024. "The Effect of Face Masks on Covid Transmission: A Meta-Analysis," Working Papers IES 2024/2, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2024.
  • Handle: RePEc:fau:wpaper:wp2024_02
    as

    Download full text from publisher

    File URL: https://ies.fsv.cuni.cz/en/effect-face-masks-covid-transmission-meta-analysis
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John P. A. Ioannidis & T. D. Stanley & Hristos Doucouliagos, 2017. "The Power of Bias in Economics Research," Economic Journal, Royal Economic Society, vol. 127(605), pages 236-265, October.
    2. Abel Brodeur & Mathias Lé & Marc Sangnier & Yanos Zylberberg, 2016. "Star Wars: The Empirics Strike Back," American Economic Journal: Applied Economics, American Economic Association, vol. 8(1), pages 1-32, January.
    3. Nadim Sharif & Khalid J Alzahrani & Shamsun Nahar Ahmed & Rubayet Rayhan Opu & Nayan Ahmed & Aeken Talukder & Raju Nunia & Mysha Samiha Chowdhury & Israt Jahan Nodi & Tama Saha & Ming Zhang & Shuvra K, 2021. "Protective measures are associated with the reduction of transmission of COVID-19 in Bangladesh: A nationwide cross-sectional study," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-15, November.
    4. Karaivanov, Alexander & Lu, Shih En & Shigeoka, Hitoshi & Chen, Cong & Pamplona, Stephanie, 2021. "Face masks, public policies and slowing the spread of COVID-19: Evidence from Canada," Journal of Health Economics, Elsevier, vol. 78(C).
    5. Tomas Havranek & Zuzana Irsova & Lubica Laslopova & Olesia Zeynalova, 2020. "Skilled and Unskilled Labor Are Less Substitutable than Commonly Thought," Working Papers IES 2020/29, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    6. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    7. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    8. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    9. Furukawa, Chishio, 2019. "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," EconStor Preprints 194798, ZBW - Leibniz Information Centre for Economics.
    10. Yuan Liu & Zhi Ning & Yu Chen & Ming Guo & Yingle Liu & Nirmal Kumar Gali & Li Sun & Yusen Duan & Jing Cai & Dane Westerdahl & Xinjin Liu & Ke Xu & Kin-fai Ho & Haidong Kan & Qingyan Fu & Ke Lan, 2020. "Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals," Nature, Nature, vol. 582(7813), pages 557-560, June.
    11. Isaiah Andrews & Maximilian Kasy, 2019. "Identification of and Correction for Publication Bias," American Economic Review, American Economic Association, vol. 109(8), pages 2766-2794, August.
    12. Mana Sugimura & Odgerel Chimed-Ochir & Yui Yumiya & Hiroki Ohge & Nobuaki Shime & Takemasa Sakaguchi & Junko Tanaka & Toshiro Takafuta & Michi Mimori & Masao Kuwabara & Toshimasa Asahara & Eisaku Kish, 2021. "The Association between Wearing a Mask and COVID-19," IJERPH, MDPI, vol. 18(17), pages 1-7, August.
    13. Jena, Pradyot Ranjan & Majhi, Ritanjali & Kalli, Rajesh & Managi, Shunsuke & Majhi, Babita, 2021. "Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 324-339.
    14. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    15. Gerber, Alan & Malhotra, Neil, 2008. "Do Statistical Reporting Standards Affect What Is Published? Publication Bias in Two Leading Political Science Journals," Quarterly Journal of Political Science, now publishers, vol. 3(3), pages 313-326, October.
    16. Stanley, T. D. & Jarrell, Stephen B. & Doucouliagos, Hristos, 2010. "Could It Be Better to Discard 90% of the Data? A Statistical Paradox," The American Statistician, American Statistical Association, vol. 64(1), pages 70-77.
    17. Tomas Havranek & Zuzana Irsova & Olesia Zeynalova, 2018. "Tuition Fees and University Enrolment: A Meta‐Regression Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(6), pages 1145-1184, December.
    18. Tomas Havranek & Anna Sokolova, 2020. "Do Consumers Really Follow a Rule of Thumb? Three Thousand Estimates from 144 Studies Say 'Probably Not'," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 35, pages 97-122, January.
    19. T. D. Stanley, 2005. "Beyond Publication Bias," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 309-345, July.
    20. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    21. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    22. Chris Doucouliagos & T.D. Stanley, 2013. "Are All Economic Facts Greatly Exaggerated? Theory Competition And Selectivity," Journal of Economic Surveys, Wiley Blackwell, vol. 27(2), pages 316-339, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominika Ehrenbergerova & Josef Bajzik & Tomas Havranek, 2023. "When Does Monetary Policy Sway House Prices? A Meta-Analysis," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 538-573, June.
    2. Zigraiova, Diana & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2021. "How puzzling is the forward premium puzzle? A meta-analysis," European Economic Review, Elsevier, vol. 134(C).
    3. Ali Elminejad & Tomas Havranek & Roman Horvath & Zuzana Irsova, 2023. "Intertemporal Substitution in Labor Supply: A Meta-Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1095-1113, December.
    4. Jindrich Matousek & Tomas Havranek & Zuzana Irsova, 2022. "Individual discount rates: a meta-analysis of experimental evidence," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 318-358, February.
    5. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    6. Irsova, Zuzana & Doucouliagos, Hristos & Havranek, Tomas & Stanley, T. D., 2023. "Meta-Analysis of Social Science Research: A Practitioner’s Guide," EconStor Preprints 273719, ZBW - Leibniz Information Centre for Economics.
    7. Tomas Havranek & Zuzana Irsova & Lubica Laslopova & Olesia Zeynalova, 2020. "Skilled and Unskilled Labor Are Less Substitutable than Commonly Thought," Working Papers IES 2020/29, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    8. Kroupova, Katerina & Havranek, Tomas & Irsova, Zuzana, 2024. "Student Employment and Education: A Meta-Analysis," Economics of Education Review, Elsevier, vol. 100(C).
    9. Cazachevici, Alina & Havranek, Tomas & Horvath, Roman, 2020. "Remittances and economic growth: A meta-analysis," World Development, Elsevier, vol. 134(C).
    10. Bajzik, Josef & Havranek, Tomas & Irsova, Zuzana & Schwarz, Jiri, 2020. "Estimating the Armington elasticity: The importance of study design and publication bias," Journal of International Economics, Elsevier, vol. 127(C).
    11. Katarina Gomoryova, 2024. "Female Leadership and Financial Performance: A Meta-Analysis," Working Papers IES 2024/6, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2024.
    12. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Mandon, Pierre & Woldemichael, Martha Tesfaye, 2023. "Has Chinese aid benefited recipient countries? Evidence from a meta-regression analysis," World Development, Elsevier, vol. 166(C).
    14. Sintos, Andreas, 2023. "Does inflation worsen income inequality? A meta-analysis," Economic Systems, Elsevier, vol. 47(4).
    15. Bajzik, Josef, 2021. "Trading volume and stock returns: A meta-analysis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Roman Horvath & Ali Elminejad & Tomas Havranek, 2020. "Publication and Identification Biases in Measuring the Intertemporal Substitution of Labor Supply," Working Papers IES 2020/32, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    17. Xindong Xue & Mingmei Cheng & Wangyongxin Zhang, 2021. "Does Education Really Improve Health? A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(1), pages 71-105, February.
    18. Josef Bajzik & Jan Janku & Simona Malovana & Klara Moravcova & Ngoc Anh Ngo, 2023. "Monetary Policy Has a Long-Lasting Impact on Credit: Evidence from 91 VAR Studies," Working Papers 2023/19, Czech National Bank.
    19. Tomas Havranek & Anna Sokolova, 2020. "Do Consumers Really Follow a Rule of Thumb? Three Thousand Estimates from 144 Studies Say 'Probably Not'," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 35, pages 97-122, January.
    20. Simona Malovana & Martin Hodula & Zuzana Gric & Josef Bajzik, 2022. "Borrower-Based Macroprudential Measures and Credit Growth: How Biased is the Existing Literature?," Working Papers 2022/8, Czech National Bank.

    More about this item

    Keywords

    meta-analysis; Covid-19; face masks; pandemic; transmission; publication bias; Bayesian model averaging;
    All these keywords.

    JEL classification:

    • I1 - Health, Education, and Welfare - - Health
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets
    • I19 - Health, Education, and Welfare - - Health - - - Other
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2024_02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.