IDEAS home Printed from https://ideas.repec.org/p/fae/wpaper/2019.19.html
   My bibliography  Save this paper

Improving Farm Environmental Performance through Technical Assistance: Empirical Evidence on Pesticide Use

Author

Listed:
  • Margaux Lapierre

    (INRA — CEEM)

  • Alexandre Sauquet

    (INRA — CEEM)

  • Julie Subervie

    (INRA — CEEM)

Abstract

In 2008, the French government announced an important shift in agricultural policy, calling for halving the use of pesticides in the next ten years. Since then, it has spent 40 million euros a year on implementing the so-called Ecophyto plan. In this paper, we evaluate the success of this program, focusing on its flagship scheme, which has provided technical assistance to 3,000 volunteer pilot farms since 2011. To do so, we use panel data collected from a representative sample of vineyards: the agricultural systems known as the largest users of pesticides. We use a slate of quasi-experimental approaches to estimate the impact of participation in the program on pesticide use and crop yields on enrolled vineyards. We find that participants have achieved reductions in pesticide use that ranges from 8 to 22 percent, thanks to the program. We moreover find that the reduction in the use of chemicals was accompanied by an increase in the use of biocontrol products. Finally, we find that this change of practices resulted in a reduction in yields for a fraction of enrolled farms while others seems to have maintained yields. Although below the expectations of the French government, these results seem rather encouraging, as they suggest that technical assistance alone can be effective in reducing significantly pesticide use in the agricultural sector.

Suggested Citation

  • Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Improving Farm Environmental Performance through Technical Assistance: Empirical Evidence on Pesticide Use," Working Papers 2019.19, FAERE - French Association of Environmental and Resource Economists.
  • Handle: RePEc:fae:wpaper:2019.19
    as

    Download full text from publisher

    File URL: http://faere.fr/pub/WorkingPapers/Lapierre_Sauquet_Subervie_FAERE_WP2019.19.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tamini, Lota D., 2011. "A nonparametric analysis of the impact of agri-environmental advisory activities on best management practice adoption: A case study of Québec," Ecological Economics, Elsevier, vol. 70(7), pages 1363-1374, May.
    2. Kevin Haninger & Lala Ma & Christopher Timmins, 2017. "The Value of Brownfield Remediation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 197-241.
    3. Jock R. Anderson, 2004. "Agricultural Extension: Good Intentions and Hard Realities," The World Bank Research Observer, World Bank, vol. 19(1), pages 41-60.
    4. Musser, Wesley N. & Tew, Bernard V. & Epperson, James E., 1981. "An Economic Examination Of An Integrated Pest Management Production System With A Contrast Between E-V And Stochastic Dominance Analysis," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 13(1), pages 1-6, July.
    5. Anderson, Jock R. & Feder, Gershon, 2007. "Agricultural Extension," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 44, pages 2343-2378, Elsevier.
    6. Chabé-Ferret, Sylvain & Subervie, Julie, 2013. "How much green for the buck? Estimating additional and windfall effects of French agro-environmental schemes by DID-matching," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 12-27.
    7. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    8. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    9. Beckmann, Volker & Wesseler, Justus, 2003. "How labour organization may affect technology adoption: an analytical framework analysing the case of integrated pest management," Environment and Development Economics, Cambridge University Press, vol. 8(3), pages 437-450, July.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Kuhfuss, Laure & Subervie, Julie, 2018. "Do European Agri-environment Measures Help Reduce Herbicide Use? Evidence From Viticulture in France," Ecological Economics, Elsevier, vol. 149(C), pages 202-211.
    12. Wilson, Clevo & Tisdell, Clem, 2001. "Why farmers continue to use pesticides despite environmental, health and sustainability costs," Ecological Economics, Elsevier, vol. 39(3), pages 449-462, December.
    13. Florence Jacquet & Jean-Pierre Butault & Laurence Guichard, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Post-Print hal-01018979, HAL.
    14. Paul J. Ferraro & Juan José Miranda, 2017. "Panel Data Designs and Estimators as Substitutes for Randomized Controlled Trials in the Evaluation of Public Programs," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 281-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rose Deperrois & Adélaïde Fadhuile & Julie Subervie, 2023. "Social Learning for the Green Transition Evidence from a Pesticide Reduction Policy," Working Papers 2023-06, Grenoble Applied Economics Laboratory (GAEL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.
    2. Alexia Stokes & Géraldine Bocquého & Pascal Carrère & Raphaël Conde Salazar & Marc Deconchat & Léo Garcia & Antoine Gardarin & Christian Gary & Cédric Gaucherel & Mamadou Gueye & Mickael Hedde & Franç, 2023. "Services provided by multifunctional agroecosystems : Questions, obstacles and solutions," Post-Print hal-04056486, HAL.
    3. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    4. Magrini, Marie-Benoit & Anton, Marc & Cholez, Célia & Corre-Hellou, Guenaelle & Duc, Gérard & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Pelzer, Elise & Voisin, Anne-Sophie & Walrand, Stéphane, 2016. "Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system," Ecological Economics, Elsevier, vol. 126(C), pages 152-162.
    5. Davis, K. & Nkonya, E. & Kato, E. & Mekonnen, D.A. & Odendo, M. & Miiro, R. & Nkuba, J., 2012. "Impact of Farmer Field Schools on Agricultural Productivity and Poverty in East Africa," World Development, Elsevier, vol. 40(2), pages 402-413.
    6. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    7. Zhanping Hu, 2020. "What Socio-Economic and Political Factors Lead to Global Pesticide Dependence? A Critical Review from a Social Science Perspective," IJERPH, MDPI, vol. 17(21), pages 1-22, November.
    8. Salomé Kahindo & Stéphane Blancard, 2022. "Reducing pesticide use through optimal reallocation at different spatial scales: The case of French arable farming," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 648-666, July.
    9. Anthony Cawley & Cathal O’Donoghue & Kevin Heanue & Rachel Hilliard & Maura Sheehan, 2018. "The Impact of Extension Services on Farm‐level Income: An Instrumental Variable Approach to Combat Endogeneity Concerns," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 40(4), pages 585-612, December.
    10. Nguyen To-The & Tuan Nguyen-Anh, 2021. "Impact of government intervention to maize efficiency at farmer’s level across time: a robust evidence in Northern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2038-2061, February.
    11. Legras, Sophie & Martin, Elsa & Piguet, Virginie, 2018. "Conjunctive Implementation of Land Sparing and Land Sharing for Environmental Preservation," Ecological Economics, Elsevier, vol. 143(C), pages 170-187.
    12. Grovermann, Christian & Schreinemachers, Pepijn & Riwthong, Suthathip & Berger, Thomas, 2017. "‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture," Ecological Economics, Elsevier, vol. 132(C), pages 91-103.
    13. Adélaïde Fadhuile & Stéphane Lemarié & Alain Pirotte, 2016. "Disaggregating the Demand for Pesticides: Does it Matter?," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 223-252, June.
    14. Michalek, Jerzy, 2022. "Environmental and farm impacts of the EU RDP agri-environmental measures: Evidence from Slovak regions," Land Use Policy, Elsevier, vol. 113(C).
    15. Florence Jacquet & Nathalie Delame & Jesus Lozano Vita & Christian Huyghe & Xavier Reboud, 2021. "The micro-economic impacts of a ban on glyphosate and its replacement with mechanical weeding in French vineyards," Post-Print hal-03318887, HAL.
    16. Dakpo, K.H. & Vincent, M. & Boussemart, J.-P., 2018. "Spatial aggregation of land uses allocation and pesticide efficiency at landscape level A Multi-ware production approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277258, International Association of Agricultural Economists.
    17. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    18. Cloé Garnache & Scott M. Swinton & Joseph A. Herriges & Frank Lupi & R. Jan Stevenson, 2016. "Solving the Phosphorus Pollution Puzzle: Synthesis and Directions for Future Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1334-1359.
    19. Jean-Marc Blazy & Julie Subervie & Jacky Paul & François Causeret & Loic Guinde & Sarah Moulla & Alban Thomas & Jorge Sierra, 2020. "Ex ante assessment of the cost-effectiveness of Agri-Environmental Schemes promoting compost use to sequester carbon in soils in Guadeloupe," CEE-M Working Papers hal-02748634, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    20. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.

    More about this item

    Keywords

    Technical assistance; Farming practices; Pesticides; Treatment effect;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fae:wpaper:2019.19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dorothée Charlier (email available below). General contact details of provider: https://edirc.repec.org/data/faereea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.