IDEAS home Printed from https://ideas.repec.org/p/esr/wpaper/wp583.html
   My bibliography  Save this paper

Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a cross-country analysis

Author

Listed:
  • Harold, Jason
  • Bertsch, Valentin
  • Lawrence, Thomas
  • Hall, Magie

Abstract

Many countries plan to decarbonise their energy systems by increasing energy efficiency and expanding the use of renewable energy sources (RES). Such actions require significant investments in new energy infrastructures. While people are generally accepting of these infrastructures, opposition sometimes arises when these developments are sited at close proximity to people's residences. Therefore, it is important to understand what actually drives people's preferences for spatial proximity to different energy infrastructure technologies. This study examines the factors influencing people's proximity preferences to a range of different energy technologies using a cross-country econometric analysis of the stated preference data from an unprecedented survey conducted on nationally representative samples of the population in Ireland, the U.S. and Germany. The survey involved more than 4,500 participants in total. This paper presents the data and selected results from a generalised ordered logit model for each energy technology surveyed. These are; wind turbines, solar power technology, biomass power plant, coal-fired power plant and natural gas power plant. The results show that, in general, German and Irish citizens are willing to accept energy infrastructures at smaller distances to their homes than their U.S. counterparts. Moreover, attitudinal factors are found to shape people's preferences more consistently than any of the socio-demographic characteristics.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Harold, Jason & Bertsch, Valentin & Lawrence, Thomas & Hall, Magie, 2018. "Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a cross-country analysis," Papers WP583, Economic and Social Research Institute (ESRI).
  • Handle: RePEc:esr:wpaper:wp583
    as

    Download full text from publisher

    File URL: https://www.esri.ie/pubs/WP583.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jed Cohen & Klaus Moeltner & Johannes Reichl & Michael Schmidthaler, 2016. "An Empirical Analysis of Local Opposition to New Transmission Lines Across the EU-27," The Energy Journal, , vol. 37(3), pages 59-82, July.
    2. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
    3. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    4. Groothuis, Peter A. & Groothuis, Jana D. & Whitehead, John C., 2008. "Green vs. green: Measuring the compensation required to site electrical generation windmills in a viewshed," Energy Policy, Elsevier, vol. 36(4), pages 1545-1550, April.
    5. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
    6. Gibbons, Stephen, 2015. "Gone with the wind: Valuing the visual impacts of wind turbines through house prices," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
    7. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    8. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    9. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    10. Charles Warren & Carolyn Lumsden & Simone O'Dowd & Richard Birnie, 2005. "'Green On Green': Public perceptions of wind power in Scotland and Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(6), pages 853-875.
    11. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    12. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    13. מחקר - ביטוח לאומי, 2006. "Summary for 2005," Working Papers 29, National Insurance Institute of Israel.
    14. Maarten Wolsink, 1994. "Entanglement of Interests and Motives: Assumptions behind the NIMBY-theory on Facility Siting," Urban Studies, Urban Studies Journal Limited, vol. 31(6), pages 851-866, June.
    15. Heintzelman, Martin D. & Vyn, Richard J. & Guth, Sarah, 2017. "Understanding the Amenity Impacts of Wind Development on an International Border," Ecological Economics, Elsevier, vol. 137(C), pages 195-206.
    16. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    17. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    18. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    19. J. Scott Long & Jeremy Freese, 2006. "Regression Models for Categorical Dependent Variables using Stata, 2nd Edition," Stata Press books, StataCorp LP, edition 2, number long2, March.
    20. Slednev, Viktor & Bertsch, Valentin & Ruppert, Manuel & Fichtner, Wolf, 2017. "Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology," MPRA Paper 79706, University Library of Munich, Germany.
    21. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
    22. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    23. Richard Williams, 2006. "Generalized ordered logit/partial proportional odds models for ordinal dependent variables," Stata Journal, StataCorp LP, vol. 6(1), pages 58-82, March.
    24. Hyland, Marie & Bertsch, Valentin, 2017. "The role of community compensation mechanisms in reducing resistance to energy infrastructure development," Papers WP559, Economic and Social Research Institute (ESRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Wilke & Zhiwei Shen & Matthias Ritter, 2021. "How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin," Energies, MDPI, vol. 14(17), pages 1-20, September.
    2. Plaga, Leonie Sara & Lynch, Muireann & Curtis, John & Bertsch, Valentin, 2024. "How public acceptance affects power system development—A cross-country analysis for wind power," Applied Energy, Elsevier, vol. 359(C).
    3. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    4. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    5. Valentin Bertsch & Valeria Di Cosmo, 2018. "Are Renewables Profitable in 2030? A Comparison between Wind and Solar across Europe," Working Papers 2018.28, Fondazione Eni Enrico Mattei.
    6. Bertsch, Valentin & Di Cosmo, Valeria, 2020. "Are renewables profitable in 2030 and do they reduce carbon emissions effectively? A comparison across Europe," MPRA Paper 101822, University Library of Munich, Germany.
    7. Ladenburg, Jacob & Kim, Jiwon & Zuch, Matteo & Soytas, Ugur, 2024. "Taking the carbon capture and storage, wind power, PV or other renewable technology path to fight climate change? Exploring the acceptance of climate change mitigation technologies – A Danish national," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    3. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    4. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    6. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    7. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    8. Boyle, Kevin J. & Boatwright, Jessica & Brahma, Sreeya & Xu, Weibin, 2019. "NIMBY, not, in siting community wind farms," Resource and Energy Economics, Elsevier, vol. 57(C), pages 85-100.
    9. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    10. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    11. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    12. Sirr, Gordon & Power, Bernadette & Ryan, Geraldine & Eakins, John & O’Connor, Ellen & le Maitre, Julia, 2023. "An analysis of the factors affecting Irish citizens’ willingness to invest in wind energy projects," Energy Policy, Elsevier, vol. 173(C).
    13. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    14. Zaunbrecher, Barbara S. & Linzenich, Anika & Ziefle, Martina, 2017. "A mast is a mast is a mast…? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis," Energy Policy, Elsevier, vol. 105(C), pages 429-439.
    15. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    16. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    17. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    18. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Acceptance of national wind power development and exposure. A case-control choice experiment approach," Discussion Papers 933, Statistics Norway, Research Department.
    19. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    20. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esr:wpaper:wp583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Burns (email available below). General contact details of provider: https://edirc.repec.org/data/esriiie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.