IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Parametric Adaptive Learning

  • Dana Heller

    (University of Chicago)

Registered author(s):

    We investigate a general parametric model of adaptive learning. The model spans most of the adaptive learning procedures proposed in the literature where agents optimize given their ranking over actions, perhaps allowing for experimentation. It provides a convenient parametric framework to analyze experimental data and to compare the performance of previously proposed models. We study the asymptotic behavior of the model for different values of the three parameters. We identify several ``parameter clusters'' that result in qualitatively similar behavior. The analysis points out crucial parameter values and the important relationships between them.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: main text
    Download Restriction: no

    Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 1496.

    in new window

    Date of creation: 01 Aug 2000
    Date of revision:
    Handle: RePEc:ecm:wc2000:1496
    Contact details of provider: Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
    4. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    5. Drew Fudenberg & David Kreps, 2010. "Learning Mixed Equilibria," Levine's Working Paper Archive 415, David K. Levine.
    6. David Easley & Aldo Rustichini, 1999. "Choice without Beliefs," Econometrica, Econometric Society, vol. 67(5), pages 1157-1184, September.
    7. T. Borgers & R. Sarin, 2010. "Naïve Reinforcement Learning With Endogenous Aspirations," Levine's Working Paper Archive 381, David K. Levine.
    8. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    9. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    10. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
    11. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.