IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Repeated Games with Present-Biased Preferences

  • Hector Chade

    (Dept. of Economics, Arizona State University)

  • Pavlo Prokopovych


  • Lones Smith

    (Dept. of Economics, University of Michigan)

We study infinitely repeated games with observable actions, where players have present-biased (so-called beta-delta) preferences. We give a two-step procedure to characterize Strotz-Pollak equilibrium payoffs: compute the continuation payoff set using recursive techniques, and then use this set to characterize the equilibrium payoff set U(beta,delta). While Strotz-Pollak equilibrium and subgame perfection differ here, the generated paths and payoffs nonetheless coincide. We then explore the cost of the present-time bias. Fixing the total present value of 1 util flow, lower beta or higher delta shrinks the payoff set. Surprisingly, unless the minimax outcome is a Nash equilibrium of the stage game, the equilibrium payoff set U(beta,delta) is not separately monotonic in beta or delta. While U(beta,delta) is contained in payoff set of a standard repeated game with smaller discount factor, the present-time bias precludes any lower bound on U(beta,delta) that would easily generalize the beta=1 folk-theorem.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1555.

in new window

Length: 24 pages
Date of creation: Jan 2006
Date of revision:
Publication status: Published in Journal of Economic Theory (March 2008), 139(1): 157-175
Handle: RePEc:cwl:cwldpp:1555
Contact details of provider: Postal:
Yale University, Box 208281, New Haven, CT 06520-8281 USA

Phone: (203) 432-3702
Fax: (203) 432-6167
Web page:

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jonathan Gruber & Botond Köszegi, 2001. "Is Addiction "Rational"? Theory and Evidence," The Quarterly Journal of Economics, Oxford University Press, vol. 116(4), pages 1261-1303.
  2. Bezalel Peleg & Menahem E. Yaari, 1973. "On the Existence of a Consistent Course of Action when Tastes are Changing," Review of Economic Studies, Oxford University Press, vol. 40(3), pages 391-401.
  3. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-96, March.
  4. Laibson, David I., 1997. "Golden Eggs and Hyperbolic Discounting," Scholarly Articles 4481499, Harvard University Department of Economics.
  5. R. A. Pollak, 1968. "Consistent Planning," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 201-208.
  6. Krusell, Per & Kuruscu, Burhanettin & Smith Jr., Anthony A, 2001. "Equilibrium Welfare and Government Policy with Quasi-Geometric Discounting," CEPR Discussion Papers 2693, C.E.P.R. Discussion Papers.
  7. Dilip Abreu & David Pearce & Ennio Stacchetti, 2010. "Towards a Theory of Discounted Repeated Games with Imperfect Monitoring," Levine's Working Paper Archive 199, David K. Levine.
  8. E. S. Phelps & R. A. Pollak, 1968. "On Second-Best National Saving and Game-Equilibrium Growth," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 185-199.
  9. Steven M. Goldman, 1980. "Consistent Plans," Review of Economic Studies, Oxford University Press, vol. 47(3), pages 533-537.
  10. Ted O'Donoghue and Matthew Rabin ., 1997. "Doing It Now or Later," Economics Working Papers 97-253, University of California at Berkeley.
  11. Dilip Abreu & David Pearce & Ennio Stacchetti, 1997. "Optimal Cartel Equilibria with Imperfect monitoring," Levine's Working Paper Archive 632, David K. Levine.
  12. Kocherlakota, Narayana R., 1996. "Reconsideration-Proofness: A Refinement for Infinite Horizon Time Inconsistency," Games and Economic Behavior, Elsevier, vol. 15(1), pages 33-54, July.
  13. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-63, September.
  14. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," Review of Economic Studies, Oxford University Press, vol. 23(3), pages 165-180.
  15. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
  16. Stefano DellaVigna & M. Daniele Paserman, 2005. "Job Search and Impatience," Journal of Labor Economics, University of Chicago Press, vol. 23(3), pages 527-588, July.
  17. Jonathan Gruber & Botond Koszegi, 2000. "Is Addiction "Rational"? Theory and Evidence," NBER Working Papers 7507, National Bureau of Economic Research, Inc.
  18. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1555. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew C. Regan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.