IDEAS home Printed from https://ideas.repec.org/p/cte/wbrepe/wb121304.html
   My bibliography  Save this paper

Valuing customer portfolios with endogenous mass-and-direct-marketing interventions using a stochastic dynamic programming decomposition

Author

Listed:
  • Vidal-Sanz, Jose M.
  • Yildirim, Gökhan

Abstract

Customer Relationship Management generally uses the value of customers to allocate marketing budget. But marketing interventions generally change the customer behavior, turning upside-down the customers ranking based on their initial valuations and making the budget allocation suboptimal. Rational Managers should allocate the marketing budget to maximize the expected net present value of future profits drawn from each customer, simultaneously planning mass marketing interventions and direct marketing effort on each individual. This is a large dimensional Stochastic Dynamic Program, which cannot be easily solved due to the curse of dimensionality. This paper propose a new decomposition algorithm to alleviate the curse of dimensionality in SDP problems, which allows forward-looking firms to allocate the marketing budget optimizing the CLV of their customer base, simultaneously using customized and mass marketing interventions

Suggested Citation

  • Vidal-Sanz, Jose M. & Yildirim, Gökhan, 2012. "Valuing customer portfolios with endogenous mass-and-direct-marketing interventions using a stochastic dynamic programming decomposition," DEE - Working Papers. Business Economics. WB wb121304, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
  • Handle: RePEc:cte:wbrepe:wb121304
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/81336ab6-0f26-4b70-93ca-3b031936185b/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Jean-Pierre Dubé & K. Sudhir & Andrew Ching & Gregory Crawford & Michaela Draganska & Jeremy Fox & Wesley Hartmann & Günter Hitsch & V. Viard & Miguel Villas-Boas & Naufel Vilcassim, 2005. "Recent Advances in Structural Econometric Modeling: Dynamics, Product Positioning and Entry," Marketing Letters, Springer, vol. 16(3), pages 209-224, December.
    3. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Juan Pablo RincÛn-Zapatero & Carlos RodrÌguez-Palmero, 2003. "Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case," Econometrica, Econometric Society, vol. 71(5), pages 1519-1555, September.
    6. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    7. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    8. Andrzej Ruszczyński, 1995. "On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 20(3), pages 634-656, August.
    9. Gabriel R. Bitran & Susana V. Mondschein, 1996. "Mailing Decisions in the Catalog Sales Industry," Management Science, INFORMS, vol. 42(9), pages 1364-1381, September.
    10. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    11. Füsun F. Gönül & Frenkel Ter Hofstede, 2006. "How to Compute Optimal Catalog Mailing Decisions," Marketing Science, INFORMS, vol. 25(1), pages 65-74, 01-02.
    12. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    13. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    14. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    15. Lars Ljungqvist & Thomas J. Sargent, 2004. "Recursive Macroeconomic Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026212274x, April.
    16. Wagner Kamakura & Carl Mela & Asim Ansari & Anand Bodapati & Pete Fader & Raghuram Iyengar & Prasad Naik & Scott Neslin & Baohong Sun & Peter Verhoef & Michel Wedel & Ron Wilcox, 2005. "Choice Models and Customer Relationship Management," Marketing Letters, Springer, vol. 16(3), pages 279-291, December.
    17. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    18. Martin L. Puterman & Moon Chirl Shin, 1978. "Modified Policy Iteration Algorithms for Discounted Markov Decision Problems," Management Science, INFORMS, vol. 24(11), pages 1127-1137, July.
    19. Michael Lewis, 2005. "Research Note: A Dynamic Programming Approach to Customer Relationship Pricing," Management Science, INFORMS, vol. 51(6), pages 986-994, June.
    20. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    21. Gupta, Sunil & Mela, Carl F. & Vidal-Sanz, Jose M., 2009. "The value of a "free" customer," DEE - Working Papers. Business Economics. WB wb092903, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    22. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    23. Manuel S. Santos & Adrian Peralta-Alva, 2005. "Accuracy of Simulations for Stochastic Dynamic Models," Econometrica, Econometric Society, vol. 73(6), pages 1939-1976, November.
    24. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    25. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    26. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    27. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    28. Chen, Xiaohong & Linton, Oliver & Robinson, Peter, 2001. "The estimation of conditional densities," LSE Research Online Documents on Economics 2312, London School of Economics and Political Science, LSE Library.
    29. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    30. Manuel Santos & John Rust, "undated". "Convergence Properties of Policy Iteration," Working Papers 2133377, Department of Economics, W. P. Carey School of Business, Arizona State University.
    31. Manuel S. Santos & Adrian Peralta-Alva, 2005. "Accuracy of Simulations for Stochastic Dynamic Models," Econometrica, Econometric Society, vol. 73(6), pages 1939-1976, November.
    32. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    33. Hugo P. Simão & Abraham George & Warren B. Powell & Ted Gifford & John Nienow & Jeff Day, 2010. "Approximate Dynamic Programming Captures Fleet Operations for Schneider National," Interfaces, INFORMS, vol. 40(5), pages 342-352, October.
    34. Martin L. Puterman & Shelby L. Brumelle, 1979. "On the Convergence of Policy Iteration in Stationary Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 60-69, February.
    35. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    36. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    37. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matsuoka, Kohsuke, 2021. "A framework for variance analysis of customer equity based on a Markov chain model," Journal of Business Research, Elsevier, vol. 129(C), pages 57-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    2. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    3. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    4. Lewis, Michael & Whitler, Kimberly A. & Hoegg, JoAndrea, 2013. "Customer Relationship Stage and the Use of Picture-Dominant versus Text-Dominant Advertising: A Field Study," Journal of Retailing, Elsevier, vol. 89(3), pages 263-280.
    5. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    6. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    7. Andreas Bachmann, 2015. "Lumpy investment and variable capacity utilization: firm-level and macroeconomic implications," Diskussionsschriften dp1510, Universitaet Bern, Departement Volkswirtschaft.
    8. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
    9. Jonathan Z. Zhang & Oded Netzer & Asim Ansari, 2014. "Dynamic Targeted Pricing in B2B Relationships," Marketing Science, INFORMS, vol. 33(3), pages 317-337, May.
    10. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    11. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    12. Mark, Tanya & Lemon, Katherine N. & Vandenbosch, Mark & Bulla, Jan & Maruotti, Antonello, 2013. "Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time," Journal of Retailing, Elsevier, vol. 89(3), pages 231-245.
    13. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    14. Mohammad Ziaul Hoque & MD. Rabiul Islam & Mohammad Nurul Azam, 2013. "Board Committee Meetings and Firm Financial Performance: An Investigation of Australian Companies," International Review of Finance, International Review of Finance Ltd., vol. 13(4), pages 503-528, December.
    15. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    16. Abonazel, Mohamed R., 2016. "Bias Correction Methods for Dynamic Panel Data Models with Fixed Effects," MPRA Paper 70628, University Library of Munich, Germany.
    17. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    18. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    19. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    20. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.

    More about this item

    Keywords

    Marketing Budget allocation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wbrepe:wb121304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.business.uc3m.es/es/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.