IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case

  • Juan Pablo RincÛn-Zapatero
  • Carlos RodrÌguez-Palmero

We study the problem of the existence and uniqueness of solutions to the Bellman equation in the presence of unbounded returns. We introduce a new approach based both on consideration of a metric on the space of all continuous functions over the state space, and on the application of some metric fixed point theorems. With appropriate conditions we prove uniqueness of solutions with respect to the whole space of continuous functions. Furthermore, the paper provides new sufficient conditions for the existence of solutions that can be applied to fairly general models. It is also proven that the fixed point coincides with the value function and that it can be approached by successive iterations of the Bellman operator. Copyright The Econometric Society 2003.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 71 (2003)
Issue (Month): 5 (09)
Pages: 1519-1555

in new window

Handle: RePEc:ecm:emetrp:v:71:y:2003:i:5:p:1519-1555
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

Order Information: Web: Email:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:5:p:1519-1555. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.