IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Dynamic Customer Management and the Value of One-to-One Marketing

  • Romana Khan

    ()

    (McCombs School of Business, University of Texas at Austin, Austin, Texas 78713)

  • Michael Lewis

    ()

    (Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130)

  • Vishal Singh

    ()

    (Stern School of Business, New York University, New York, New York 10012)

Registered author(s):

    The concept of one-to-one marketing is intuitively appealing, but there is little research that investigates the value of individual-level marketing relative to segment-level or mass marketing. In this paper, we investigate the financial benefits of and computational challenges involved in one-to-one marketing. The analysis uses data from an online grocery and drug retailer. Like many retailers, this firm uses multiple promotional instruments including discount coupons, free shipping offers, and a loyalty program. We investigate the impact of customizing these promotions on the two most important consumer decisions: the decision to buy from the store and expenditure. Our modeling approach accounts for two sources of heterogeneity in consumers' responsiveness to various marketing mix elements: cross-sectional differences across consumers and temporal differences within consumers based on the purchase cycle. The model parameter estimates are fed into a dynamic programming model that determines the optimal number, sequence, and timing of promotions to maximize retailer profits. A series of policy simulations show that customizing promotions leads to a significant increase in profits relative to the firm's current practice of uniform promotions. However, the effectiveness of various promotions varies because of both cross-sectional differences in consumers as well within consumer heterogeneity due to purchase cycle factors. For instance, we find that free shipping tends to be the preferred instrument for re-acquiring lapsed customers, whereas an across-the-board price cut (via a discount coupon) is the most effective tool for managing the segment of most active customers. Interestingly, we find that customizing based on within-customer temporal heterogeneity contributes more to profitability than exploiting variations across consumers. This is important because the computational burden of implementing the dynamic optimization to account for cross-sectional heterogeneity is far greater than accounting for temporal heterogeneity. Furthermore, targeting promotions based only on timing rather than the nature and magnitude of the offers across consumers alleviates the public relations risks of price discrimination. Implications for marketing managers are also discussed.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.1090.0497
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 28 (2009)
    Issue (Month): 6 (11-12)
    Pages: 1063-1079

    as
    in new window

    Handle: RePEc:inm:ormksc:v:28:y:2009:i:6:p:1063-1079
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    2. Michael P. Keane & Kenneth I. Wolpin, 1994. "The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence," Staff Report 181, Federal Reserve Bank of Minneapolis.
    3. Kim, Jin Gyo & Menzefricke, Ulrich & Feinberg, Fred M., 2005. "Modeling Parametric Evolution in a Random Utility Framework," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 282-294, July.
    4. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    5. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    6. Gabriel R. Bitran & Susana V. Mondschein, 1996. "Mailing Decisions in the Catalog Sales Industry," Management Science, INFORMS, vol. 42(9), pages 1364-1381, September.
    7. Jinhong Xie & Steven M. Shugan, 2001. "Electronic Tickets, Smart Cards, and Online Prepayments: When and How to Advance Sell," Marketing Science, INFORMS, vol. 20(3), pages 219-243, June.
    8. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    9. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    10. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    11. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    12. Michael Lewis & Vishal Singh & Scott Fay, 2006. "An Empirical Study of the Impact of Nonlinear Shipping and Handling Fees on Purchase Incidence and Expenditure Decisions," Marketing Science, INFORMS, vol. 25(1), pages 51-64, 01-02.
    13. Vishal P. Singh & Karsten T. Hansen & Robert C. Blattberg, 2006. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter," Marketing Science, INFORMS, vol. 25(5), pages 457-476, September.
    14. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    15. Michael Lewis, 2005. "Research Note: A Dynamic Programming Approach to Customer Relationship Pricing," Management Science, INFORMS, vol. 51(6), pages 986-994, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:28:y:2009:i:6:p:1063-1079. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.