IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2006112.html
   My bibliography  Save this paper

Estimation of stable distributions by indirect inference

Author

Listed:
  • GARCIA, René
  • RENAULT, Eric
  • VEREDAS, David

Abstract

This article deals with the estimation of the parameters of an -stable distribution by the indirect inference method with the skewed-t distribution as an auxiliary model. The latter distribution appears as a good candidate for an auxiliary model since it has the same number of parameters as the -stable distribution, with each parameter playing a similar role. To improve the properties of the estimator in finite sample, we use a variant of the method called Constrained Indirect Inference. In a Monte Carlo study, we show that this method delivers estimators with good properties in finite sample. In particular they are much more efficient than two other prevalent methods based on the characteristic function and the empirical quantiles. We provide an empirical application to hedge fund returns.

Suggested Citation

  • GARCIA, René & RENAULT, Eric & VEREDAS, David, 2006. "Estimation of stable distributions by indirect inference," CORE Discussion Papers 2006112, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2006112
    as

    Download full text from publisher

    File URL: https://uclouvain.be/en/research-institutes/immaq/core/dp-2006.html
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Groenendijk, Patrick A. & Lucas, Andre & de Vries, Casper G., 1995. "A note on the relationship between GARCH and symmetric stable processes," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 253-264, September.
    6. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    7. Deo, Rohit S., 2000. "On estimation and testing goodness of fit for m-dependent stable sequences," Journal of Econometrics, Elsevier, vol. 99(2), pages 349-372, December.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    9. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    10. Ronald Gallant, A. & Tauchen, George, 1999. "The relative efficiency of method of moments estimators1," Journal of Econometrics, Elsevier, vol. 92(1), pages 149-172, September.
    11. Eugene F. Fama, 1965. "Portfolio Analysis in a Stable Paretian Market," Management Science, INFORMS, vol. 11(3), pages 404-419, January.
    12. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
    13. Bawa, Vijay S & Elton, Edwin J & Gruber, Martin J, 1979. "Simple Rules for Optimal Portfolio Selection in Stable Paretian Markets," Journal of Finance, American Finance Association, vol. 34(4), pages 1041-1047, September.
    14. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    15. Luc Bauwens & Sébastien Laurent, 2002. "A New Class of Multivariate skew Densities, with Application to GARCH Models," Computing in Economics and Finance 2002 5, Society for Computational Economics.
    16. Marine Carrasco & Jean-Pierre Florens, 2000. "Efficient GMM Estimation Using the Empirical Characteristic Function," Working Papers 2000-33, Center for Research in Economics and Statistics.
    17. Yacine Aït-Sahalia & Jean Jacod, 2008. "Fisher's Information for Discretely Sampled Lévy Processes," Econometrica, Econometric Society, vol. 76(4), pages 727-761, July.
    18. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
    19. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, pages 325-337.
    20. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
    21. Deo, Rohit S., 2002. "On testing the adequacy of stable processes under conditional heteroscedasticity," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 257-270, March.
    22. Ghose, Devajyoti & Kroner, Kenneth F., 1995. "The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 225-251, September.
    23. Dridi, Ramdan & Guay, Alain & Renault, Eric, 2007. "Indirect inference and calibration of dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 397-430, February.
    24. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    25. Marco J. Lombardi & Giorgio Calzolari, 2008. "Indirect Estimation of α-Stable Distributions and Processes," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 193-208, March.
    26. Akgiray, Vedat & Lamoureux, Christopher G, 1989. "Estimation of Stable-Law Parameters: A Comparative Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 85-93, January.
    27. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    28. Carrasco, Marine & Chernov, Mikhaël & Florens, Jean-Pierre & Ghysels, Eric, 2000. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," IDEI Working Papers 116, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2002.
    29. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    30. Tauchen, George & Zhou, Hao, 2011. "Realized jumps on financial markets and predicting credit spreads," Journal of Econometrics, Elsevier, vol. 160(1), pages 102-118, January.
    31. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    32. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
    33. Giorgio Calzolari & Gabriele Fiorentini & Enrique Sentana, 2004. "Constrained Indirect Estimation," Review of Economic Studies, Oxford University Press, vol. 71(4), pages 945-973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Chaussé, 2011. "Generalized empirical likelihood for a continuum of moment conditions," Working Papers 1104, University of Waterloo, Department of Economics, revised Oct 2011.
    2. Chaussé, Pierre, 2010. "Computing Generalized Method of Moments and Generalized Empirical Likelihood with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i11).
    3. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, pages 3599-3622.
    4. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    6. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    7. Matteo Barigozzi & Roxana Halbleib & David Veredas, "undated". "Which model to match?," ULB Institutional Repository 2013/136240, ULB -- Universite Libre de Bruxelles.
    8. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    9. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute.
    10. Stelios Arvanitis & Antonis Demos, "undated". "A Class of Indirect Inference Estimators: Higher Order Asymptotics and Approximate Bias Correction (Revised)," DEOS Working Papers 1411, Athens University of Economics and Business, revised 23 Sep 2014.
    11. Stelios Arvanitis & Antonis Demos, 2014. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," DEOS Working Papers 1406, Athens University of Economics and Business.
    12. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
    13. Matteo Bonato, 2012. "Modeling fat tails in stock returns: a multivariate stable-GARCH approach," Computational Statistics, Springer, vol. 27(3), pages 499-521, September.
    14. repec:gam:jecnmx:v:4:y:2016:i:2:p:25:d:69492 is not listed on IDEAS
    15. Di Iorio, Francesca & Calzolari, Giorgio, 2006. "Discontinuities in indirect estimation: An application to EAR models," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2124-2136, April.
    16. Arel-Bundock, Vincent, 2013. "A solution to the weak instrument bias in 2SLS estimation: Indirect inference with stochastic approximation," Economics Letters, Elsevier, vol. 120(3), pages 495-498.
    17. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    18. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-28, May.
    19. Lombardi, Marco J. & Veredas, David, 2009. "Indirect estimation of elliptical stable distributions," Computational Statistics & Data Analysis, Elsevier, pages 2309-2324.
    20. Parrini, Alessandro, 2012. "Indirect estimation of GARCH models with alpha-stable innovations," MPRA Paper 38544, University Library of Munich, Germany.
    21. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.

    More about this item

    Keywords

    stable distribution; indirect inference; constrained indirect inference; skewed-t distribution;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2006112. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.