IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Self-Fulfilling Mechanisms and Rational Expectations

  • FORGES, Françoise

    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

  • MINELLIÂ , Enrico

    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

In a Bayesian game G, the players first receive private information on the state of nature and then simultaneously choose an action. We assume that the vector of actions a generates a signal g(a). A mechanism for G is a mapping [ mu ] from the set of states of nature S to the product sert of players’ actions A. [ mu ] is self-fulfilling if, given the information revealed by [ mu ] (namely, g([ mu ] )(s)) if the state of nature is s), no player can gain in unilaterally deviating from the action prescribed by the mechanism. Let SF(G) denote the set of payoffs achievable through an incentive compatible self-fulfilling mechanism. Examples show that SF(G) may not intersect the set N(G) of Nash equilibrium payoffs of G. Obviously, SF(G) and N(G) coincide if G is a game of complete information. Let E be an exchange economy with differential information. We associate a ( Bayesian) market game GE with E. In GE, the signal generated by the players’ actions is a vector of prices. We prove that the allocations achieved through a self-fulfilling mechanism in GE coincide with the rational expectations equilibrium allocations in E. In order to understand how self-fulfillingness can be achieved in a dynamic framework, we analyze the relationship between SF(G) and the Nash equilibria of the infinitely repeated game G [ infinity] generated by G. We show in particular that SF(G) can be interpreted as a set of inert solutions of G [ infinity].

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1994044.

in new window

Date of creation: 01 Sep 1994
Date of revision:
Handle: RePEc:cor:louvco:1994044
Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1994044. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.