Nowcasting Macroeconomic Variables Using High-Frequency Fiscal Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Onorante, Luca & Pedregal, Diego J. & Pérez, Javier J. & Signorini, Sara, 2010.
"The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area,"
Journal of Policy Modeling, Elsevier, vol. 32(1), pages 98-119, January.
- Onorante, Luca & Pedregal, Diego J. & Pérez, Javier J. & Signorini, Sara, 2008. "The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area," Working Paper Series 901, European Central Bank.
- Tomas Havranek & Roman Horvath & Jakub Mateju, 2010. "Do Financial Variables Help Predict Macroeconomic Environment? The Case of the Czech Republic," Working Papers 2010/06, Czech National Bank, Research and Statistics Department.
- Siem Jan Koopman & Marius Ooms, 2003.
"Time Series Modelling of Daily Tax Revenues,"
Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
- Marius Ooms & Björn de Groot & Siem Jan Koopman, 1999. "Time-Series Modelling of Daily Tax Revenues," Computing in Economics and Finance 1999 312, Society for Computational Economics.
- Siem Jan Koopman & Marius Ooms, 2001. "Time Series Modelling of Daily Tax Revenues," Tinbergen Institute Discussion Papers 01-032/4, Tinbergen Institute.
- Pedregal, Diego J. & Pérez, Javier J., 2010.
"Should quarterly government finance statistics be used for fiscal surveillance in Europe?,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 794-807, October.
- Pérez, Javier J. & Pedregal, Diego J., 2008. "Should quarterly government finance statistics be used for fiscal surveillane in Europe?," Working Paper Series 937, European Central Bank.
- Perez, Javier J., 2007. "Leading indicators for euro area government deficits," International Journal of Forecasting, Elsevier, vol. 23(2), pages 259-275.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
- Andrew Hughes Hallett & Moritz Kuhn & Thomas Warmedinger, 2012.
"The gains from early intervention in Europe: Fiscal surveillance and fiscal planning using cash data,"
European Journal of Government and Economics, Europa Grande, vol. 1(1), pages 44-65, June.
- Hughes Hallett, Andrew & Kuhn, Moritz & Warmedinger, Thomas, 2010. "The gains from early intervention in Europe: Fiscal surveillance and fiscal planning using cash data," Working Paper Series 1220, European Central Bank.
- Lahiri, Kajal & Yang, Cheng, 2022.
"Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Kajal Lahiri & Cheng Yang, 2021. "Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York," CESifo Working Paper Series 9365, CESifo.
- Paredes, Joan & Pedregal, Diego J. & Pérez, Javier J., 2014. "Fiscal policy analysis in the euro area: Expanding the toolkit," Journal of Policy Modeling, Elsevier, vol. 36(5), pages 800-823.
- Teresa Leal Linares & Javier J. Pérez, 2009. "Un sistema ARIMA con agregación temporal para la previsión y el seguimiento del déficit del Estado," Hacienda Pública Española / Review of Public Economics, IEF, vol. 190(3), pages 27-58, June.
- Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024.
"Forecasting UK inflation bottom up,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
- Joseph, Andreas & Kalamara, Eleni & Kapetanios, George & Potjagailo, Galina & Chakraborty, Chiranjit, 2021. "Forecasting UK inflation bottom up," Bank of England working papers 915, Bank of England, revised 27 Sep 2022.
- Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
- António Afonso & Ricardo Sousa, 2011.
"The macroeconomic effects of fiscal policy in Portugal: a Bayesian SVAR analysis,"
Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 10(1), pages 61-82, April.
- Ricardo M. Sousa & António Afonso, 2009. "The Macroeconomic Effects of Fiscal Policy in Portugal: a Bayesian SVAR Analysis," NIPE Working Papers 3/2009, NIPE - Universidade do Minho.
- António Afonso & Ricardo M. Sousa, 2009. "The Macroeconomic Effects of Fiscal Policy in Portugal: a Bayesian SVAR Analysis," Working Papers Department of Economics 2009/09, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- Martyna Marczak & Víctor Gómez, 2017.
"Monthly US business cycle indicators: a new multivariate approach based on a band-pass filter,"
Empirical Economics, Springer, vol. 52(4), pages 1379-1408, June.
- Marczak, Martyna & Gómez, Victor, 2013. "Monthly US business cycle indicators: A new multivariate approach based on a band-pass filter," FZID Discussion Papers 64-2013, University of Hohenheim, Center for Research on Innovation and Services (FZID).
- Allan, Grant & Koop, Gary & McIntyre, Stuart & Smith, Paul, 2014.
"Nowcasting Scottish GDP Growth,"
SIRE Discussion Papers
2015-08, Scottish Institute for Research in Economics (SIRE).
- Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2014. "Nowcasting Scottish GDP Growth," Working Paper series 41_14, Rimini Centre for Economic Analysis.
- Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2014. "Nowcasting Scottish GDP growth," Working Papers 1411, University of Strathclyde Business School, Department of Economics.
- Alkhareif, Ryadh M. & Barnett, William A., 2020.
"Nowcasting Real GDP for Saudi Arabia,"
MPRA Paper
104278, University Library of Munich, Germany.
- Ryadh M. Alkhareif & William A. Barnett, 2020. "Nowcasting Real Gdp For Saudi Arabia," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202018, University of Kansas, Department of Economics, revised Nov 2020.
- Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018.
"Uncertain Kingdom: Nowcasting GDP and its Revisions,"
Discussion Papers
1824, Centre for Macroeconomics (CFM).
- Anesti, Nikoleta & Galvão, Ana & Miranda-Agrippino, Silvia, 2018. "Uncertain Kingdom: nowcasting GDP and its revisions," Bank of England working papers 764, Bank of England, revised 31 Jan 2020.
- Anesti, Nikoleta & Galvao, Ana Beatriz & Miranda-Agrippino, Silvia, 2018. "Uncertain kingdom: nowcasting GDP and its revisions," LSE Research Online Documents on Economics 90382, London School of Economics and Political Science, LSE Library.
- Bragoli, Daniela & Modugno, Michele, 2017.
"A now-casting model for Canada: Do U.S. variables matter?,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
- Daniela Bragoli & Michele Modugno, 2016. "A Nowcasting Model for Canada: Do U.S. Variables Matter?," Finance and Economics Discussion Series 2016-036, Board of Governors of the Federal Reserve System (U.S.).
More about this item
Keywords
Bridge equations; daily data; fiscal; midas; nowcasting; real-time data; short-term forecasting; STL;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2022-07-25 (Econometric Time Series)
- NEP-FOR-2022-07-25 (Forecasting)
- NEP-MAC-2022-07-25 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2022/5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tomas Karhanek (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.