IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt8031v4f4.html
   My bibliography  Save this paper

Temperature and work: Time allocated to work under varying climate and labor market conditions

Author

Listed:
  • Neidell, Matthew
  • Zivin, Joshua Graff
  • Sheahan, Megan
  • Willwerth, Jacqueline
  • Fant, Charles
  • Sarofim, Marcus
  • Martinich, Jeremy

Abstract

Workers in climate exposed industries such as agriculture, construction, and manufacturing face increased health risks of working on high temperature days and may make decisions to reduce work on high-heat days to mitigate this risk. Utilizing the American Time Use Survey (ATUS) for the period 2003 through 2018 and historical weather data, we model the relationship between daily temperature and time allocation, focusing on hours worked by high-risk laborers. The results indicate that labor allocation decisions are context specific and likely driven by supply-side factors. We do not find a significant relationship between temperature and hours worked during the Great Recession (2008-2014), perhaps due to high competition for employment, however during periods of economic growth (2003-2007, 2015-2018) we find a significant reduction in hours worked on high-heat days. During periods of economic growth, for every degree above 90 on a particular day, the average high-risk worker reduces their time devoted to work by about 2.6 minutes relative to a 90-degree day. This effect is expected to intensify in the future as temperatures rise. Applying the modeled relationships to climate projections through the end of century, we find that annual lost wages resulting from decreased time spent working on days over 90 degrees across the United States range from $36.7 to $80.0 billion in 2090 under intermediate and high emission futures, respectively.

Suggested Citation

  • Neidell, Matthew & Zivin, Joshua Graff & Sheahan, Megan & Willwerth, Jacqueline & Fant, Charles & Sarofim, Marcus & Martinich, Jeremy, 2021. "Temperature and work: Time allocated to work under varying climate and labor market conditions," University of California at San Diego, Economics Working Paper Series qt8031v4f4, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt8031v4f4
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8031v4f4.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    2. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and the Timing of Work," CESifo Working Paper Series 10681, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lé Mathias, 2022. "The adaptation of economies to climate change: lessons from the economic research [L’adaptation des économies au changement climatique : les enseignements tirés de la recherche économique]," Bulletin de la Banque de France, Banque de France, issue 239.
    2. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    3. Martin Henseler & Ingmar Schumacher, 2019. "The impact of weather on economic growth and its production factors," Climatic Change, Springer, vol. 154(3), pages 417-433, June.
    4. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    5. Nicholas Apergis & Alexandros Gabrielsen & Lee Smales, 2016. "(Unusual) weather and stock returns—I am not in the mood for mood: further evidence from international markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 30(1), pages 63-94, February.
    6. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    7. Jonathan Colmer, 2013. "Climate Variability, Child Labour and Schooling: Evidence on the Intensive and Extensive Margin," GRI Working Papers 132, Grantham Research Institute on Climate Change and the Environment.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    10. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    11. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    12. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    13. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    14. Hanlon, W. Walker & Hansen, Casper Worm & Kantor, Jake, 2021. "Temperature, Disease, and Death in London: Analyzing Weekly Data for the Century from 1866 to 1965," The Journal of Economic History, Cambridge University Press, vol. 81(1), pages 40-80, March.
    15. Cascarano, Michele & Natoli, Filippo & Petrella, Andrea, 2022. "Entry, exit and market structure in a changing climate," MPRA Paper 112868, University Library of Munich, Germany.
    16. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    17. Claudia Custodio & Miguel A. Ferreira & Emilia Garcia-Appendini & Adrian Lam, 2022. "Economic impact of climate change," Nova SBE Working Paper Series wp645, Universidade Nova de Lisboa, Nova School of Business and Economics.
    18. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    19. Lee, Wang-Sheng & Li, Ben G., 2021. "Extreme weather and mortality: Evidence from two millennia of Chinese elites," Journal of Health Economics, Elsevier, vol. 76(C).
    20. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt8031v4f4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.