IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/17-10.html
   My bibliography  Save this paper

Which Panel Data Estimator Should I Use?: A Corrigendum and Extension

Author

Listed:

Abstract

This study uses Monte Carlo experiments to produce new evidence on the performance of a wide range of panel data estimators. It focuses on estimators that are readily available in statistical software packages such as Stata and Eviews, and for which the number of cross-sectional units (N) and time periods (T) are small to moderate in size. The goal is to develop practical guidelines that will enable researchers to select the best estimator for a given type of data. It extends a previous study on the subject (Reed and Ye, 2011), and modifies their recommendations. The new recommendations provide a (virtually) complete decision tree: When it comes to choosing an estimator for efficiency, it uses the size of the panel dataset (N and T) to guide the researcher to the best estimator. When it comes to choosing an estimator for hypothesis testing, it identifies one estimator as superior across all the data scenarios included in the study. An unusual finding is that researchers should use different estimators for estimating coefficients and testing hypotheses. We present evidence that bootstrapping allows one to use the same estimator for both.

Suggested Citation

  • Mantobaye Moundigbaye & William S. Rea & W. Robert Reed, 2017. "Which Panel Data Estimator Should I Use?: A Corrigendum and Extension," Working Papers in Economics 17/10, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:17/10
    as

    Download full text from publisher

    File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1710.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kersting, Erasmus & Kilby, Christopher, 2014. "Aid and democracy redux," European Economic Review, Elsevier, vol. 67(C), pages 125-143.
    2. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    3. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2013. "A Generalized Spatial Panel Data Model with Random Effects," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 650-685, August.
    4. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    5. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    6. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    7. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    8. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    9. Biagi, Bianca & Brandono, Maria Giovanna & Detotto, Claudio, 2012. "The effect of tourism on crime in Italy: A dynamic panel approach," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 6, pages 1-24.
    10. Coakley, Jerry & Fuertes, Ana-Maria & Smith, Ron, 2006. "Unobserved heterogeneity in panel time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2361-2380, May.
    11. Reed W. Robert & Webb Rachel, 2010. "The PCSE Estimator is Good -- Just Not As Good As You Think," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-26, September.
    12. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    13. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    14. repec:hrv:faseco:30410811 is not listed on IDEAS
    15. repec:cup:apsrev:v:89:y:1995:i:03:p:634-647_00 is not listed on IDEAS
    16. Casper, Gretchen & Tufis, Claudiu, 2003. "Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets," Political Analysis, Cambridge University Press, vol. 11(02), pages 196-203, March.
    17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Panel Data Estimators; Monte Carlo simulation; PCSE; Parks model;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:17/10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee). General contact details of provider: http://edirc.repec.org/data/decannz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.