IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_1299_20.html
   My bibliography  Save this paper

Forecasting US recessions: the role of economic uncertainty

Author

Listed:
  • Valerio Ercolani

    (Bank of Italy)

  • Filippo Natoli

    (Bank of Italy)

Abstract

This paper highlights the role of macroeconomic and financial uncertainty in predicting US recessions. In-sample forecasts using probit models indicate that these two variables are the best predictors of recessions at short horizons. Macroeconomic uncertainty has the highest predictive power up to 7 months ahead and becomes the second best predictor --- after the yield curve slope --- at longer horizons. Using data up to end-2018, out-of-sample forecasts show that uncertainty contributed significantly to lowering the probability of a recession in 2019, which indeed did not occur.

Suggested Citation

  • Valerio Ercolani & Filippo Natoli, 2020. "Forecasting US recessions: the role of economic uncertainty," Temi di discussione (Economic working papers) 1299, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_1299_20
    as

    Download full text from publisher

    File URL: https://www.bancaditalia.it/pubblicazioni/temi-discussione/2020/2020-1299/en_tema_1299.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    4. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    5. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    6. Karnizova, Lilia & Li, Jiaxiong (Chris), 2014. "Economic policy uncertainty, financial markets and probability of US recessions," Economics Letters, Elsevier, vol. 125(2), pages 261-265.
    7. Giovanni Favara & Simon Gilchrist & Kurt F. Lewis & Egon Zakrajšek, 2016. "Updating the Recession Risk and the Excess Bond Premium," FEDS Notes 2016-10-06, Board of Governors of the Federal Reserve System (U.S.).
    8. Claudio Borio & Mathias Drehmann & Dora Xia, 2018. "The financial cycle and recession risk," BIS Quarterly Review, Bank for International Settlements, December.
    9. Jonathan H. Wright, 2006. "The yield curve and predicting recessions," Finance and Economics Discussion Series 2006-07, Board of Governors of the Federal Reserve System (U.S.).
    10. Giovanni Favara & Simon Gilchrist & Kurt F. Lewis & Egon Zakrajšek, 2016. "Recession Risk and the Excess Bond Premium," FEDS Notes 2016-04-08, Board of Governors of the Federal Reserve System (U.S.).
    11. Estrella, Arturo, 1998. "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 198-205, April.
    12. Sara Cecchetti, 2020. "An analysis of sovereign credit risk premia in the euro area: are they explained by local or global factors?," Temi di discussione (Economic working papers) 1271, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Thanh Cong, 2022. "Economic policy uncertainty: The probability and duration of economic recessions in major European Union countries," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Donato Ceci & Andrea Silvestrini, 2023. "Nowcasting the state of the Italian economy: The role of financial markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1569-1593, November.
    4. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
    5. Pop, Ionuț Daniel, 2022. "COVID-19 crisis, voters’ drivers, and financial markets consequences on US presidential election and global economy," Finance Research Letters, Elsevier, vol. 44(C).
    6. Choi, Sun-Yong, 2020. "Industry volatility and economic uncertainty due to the COVID-19 pandemic: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 37(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harri Ponka, 2017. "The Role of Credit in Predicting US Recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 469-482, August.
    2. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    3. Cremers, Martijn & Fleckenstein, Matthias & Gandhi, Priyank, 2021. "Treasury yield implied volatility and real activity," Journal of Financial Economics, Elsevier, vol. 140(2), pages 412-435.
    4. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    5. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    6. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    7. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    8. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    9. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    10. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    11. Christiansen, Charlotte, 2013. "Predicting severe simultaneous recessions using yield spreads as leading indicators," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.
    12. Pönkä, Harri & Zheng, Yi, 2019. "The role of oil prices on the Russian business cycle," Research in International Business and Finance, Elsevier, vol. 50(C), pages 70-78.
    13. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    14. Hwang, Youngjin, 2019. "Forecasting recessions with time-varying models," Journal of Macroeconomics, Elsevier, vol. 62(C).
    15. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    16. Hashmat Khan & Santosh Upadhayaya, 2020. "Does business confidence matter for investment?," Empirical Economics, Springer, vol. 59(4), pages 1633-1665, October.
    17. Donato Ceci & Andrea Silvestrini, 2023. "Nowcasting the state of the Italian economy: The role of financial markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1569-1593, November.
    18. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    19. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    20. Simon Gilchrist & Benoit Mojon, 2018. "Credit Risk in the Euro Area," Economic Journal, Royal Economic Society, vol. 128(608), pages 118-158, February.

    More about this item

    Keywords

    macroeconomic and financial uncertainty; yield curve slope; recession; probit forecasting model.;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1299_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.