IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.05210.html
   My bibliography  Save this paper

Identification of Causal Effects with a Bunching Design

Author

Listed:
  • Carolina Caetano
  • Gregorio Caetano
  • Leonard Goff
  • Eric Nielsen

Abstract

We show that causal effects can be identified when there is bunching in the distribution of a continuous treatment variable, without imposing any parametric assumptions. This yields a new nonparametric method for overcoming selection bias in the absence of instrumental variables, panel data, or other popular research designs for causal inference. The method leverages the change of variables theorem from integration theory, relating the selection bias to the ratio of the density of the treatment and the density of the part of the outcome that varies with confounders. At the bunching point, the treatment level is constant, so the variation in the outcomes is due entirely to unobservables, allowing us to identify the denominator. Our main result identifies the average causal response to the treatment among individuals who marginally select into the bunching point. We further show that under additional smoothness assumptions on the selection bias, treatment effects away from the bunching point may also be identified. We propose estimators based on standard software packages and apply the method to estimate the effect of maternal smoking during pregnancy on birth weight.

Suggested Citation

  • Carolina Caetano & Gregorio Caetano & Leonard Goff & Eric Nielsen, 2025. "Identification of Causal Effects with a Bunching Design," Papers 2507.05210, arXiv.org.
  • Handle: RePEc:arx:papers:2507.05210
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.05210
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoichi Arai & Hidehiko Ichimura, 2018. "Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator," Quantitative Economics, Econometric Society, vol. 9(1), pages 441-482, March.
    2. Carolina Caetano & Gregorio Caetano & Eric Nielsen, 2024. "Correcting for Endogeneity in Models with Bunching," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 851-863, July.
    3. Arai, Yoichi & Ichimura, Hidehiko, 2016. "Optimal bandwidth selection for the fuzzy regression discontinuity estimator," Economics Letters, Elsevier, vol. 141(C), pages 103-106.
    4. Sören Blomquist & Whitney K. Newey & Anil Kumar & Che-Yuan Liang, 2021. "On Bunching and Identification of the Taxable Income Elasticity," Journal of Political Economy, University of Chicago Press, vol. 129(8), pages 2320-2343.
    5. Sandra E. Black & Paul J. Devereux & Kjell G. Salvanes, 2007. "From the Cradle to the Labor Market? The Effect of Birth Weight on Adult Outcomes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 409-439.
    6. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    7. Timothy B. Armstrong & Michal Kolesár, 2020. "Simple and honest confidence intervals in nonparametric regression," Quantitative Economics, Econometric Society, vol. 11(1), pages 1-39, January.
    8. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    9. Carolina Caetano, 2015. "A Test of Exogeneity Without Instrumental Variables in Models With Bunching," Econometrica, Econometric Society, vol. 83(4), pages 1581-1600, July.
    10. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    11. Gregorio Caetano & Vikram Maheshri, 2018. "Identifying dynamic spillovers of crime with a causal approach to model selection," Quantitative Economics, Econometric Society, vol. 9(1), pages 343-394, March.
    12. repec:cdl:econwp:qt9vt997qn is not listed on IDEAS
    13. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    14. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    15. Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2022. "Discretizing Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 90(2), pages 625-643, March.
    16. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
    17. Emmanuel Saez, 2010. "Do Taxpayers Bunch at Kink Points?," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 180-212, August.
    18. Henrik J. Kleven & Mazhar Waseem, 2013. "Using Notches to Uncover Optimization Frictions and Structural Elasticities: Theory and Evidence from Pakistan," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(2), pages 669-723.
    19. repec:cdl:ucsdec:qt9vt997qn is not listed on IDEAS
    20. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    21. Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2020. "Simple Local Polynomial Density Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1449-1455, July.
    22. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    23. Kato, Ryutah & Sasaki, Yuya, 2017. "On Using Linear Quantile Regressions For Causal Inference," Econometric Theory, Cambridge University Press, vol. 33(3), pages 664-690, June.
    24. Pinkse, Joris & Schurter, Karl, 2023. "Estimates Of Derivatives Of (Log) Densities And Related Objects," Econometric Theory, Cambridge University Press, vol. 39(2), pages 321-356, April.
    25. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    26. Leonard Goff & D'esir'e K'edagni & Huan Wu, 2024. "Testing Identifying Assumptions in Parametric Separable Models: A Conditional Moment Inequality Approach," Papers 2410.12098, arXiv.org.
    27. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2010. "Nonparametric density estimation for multivariate bounded data," LIDAM Reprints CORE 2301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    28. Caetano, Carolina & Rothe, Christoph & Yıldız, Neşe, 2016. "A discontinuity test for identification in triangular nonseparable models," Journal of Econometrics, Elsevier, vol. 193(1), pages 113-122.
    29. Claudia Noack & Christoph Rothe, 2024. "Bias‐Aware Inference in Fuzzy Regression Discontinuity Designs," Econometrica, Econometric Society, vol. 92(3), pages 687-711, May.
    30. repec:ucn:wpaper:10197/317 is not listed on IDEAS
    31. Khalil, Umair & Yıldız, Neşe, 2022. "A test of the selection on observables assumption using a discontinuously distributed covariate," Journal of Econometrics, Elsevier, vol. 226(2), pages 423-450.
    32. Brantly Callaway & Andrew Goodman-Bacon & Pedro H. C. Sant'Anna, 2021. "Difference-in-Differences with a Continuous Treatment," Papers 2107.02637, arXiv.org, revised Jun 2025.
    33. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, September.
    34. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    35. Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
    36. Caetano, Carolina & Caetano, Gregorio & Nielsen, Eric, 2024. "Are children spending too much time on enrichment activities?," Economics of Education Review, Elsevier, vol. 98(C).
    37. Sasaki, Yuya, 2015. "What Do Quantile Regressions Identify For General Structural Functions?," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1102-1116, October.
    38. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    2. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    3. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Rahul Singh & Moses Stewart, 2025. "Placebo Discontinuity Design," Papers 2507.12693, arXiv.org.
    5. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    6. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    7. Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
    8. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    9. Carolina Caetano & Gregorio Caetano & Hao Fe & Eric R. Nielsen, 2021. "A Dummy Test of Identification in Models with Bunching," Finance and Economics Discussion Series 2021-068, Board of Governors of the Federal Reserve System (U.S.).
    10. Martti Kaila, 2024. "How Do People React to Income-Based Fines? Evidence from Speeding Tickets Discontinuities," CESifo Working Paper Series 11064, CESifo.
    11. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    12. Xie, Haitian, 2024. "Nonlinear and nonseparable structural functions in regression discontinuity designs with a continuous treatment," Journal of Econometrics, Elsevier, vol. 242(1).
    13. Jun Ma & Zhengfei Yu, 2020. "Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs," Papers 2008.09263, arXiv.org, revised May 2024.
    14. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    15. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    16. Yuta Okamoto & Yuuki Ozaki, 2024. "On Extrapolation of Treatment Effects in Multiple-Cutoff Regression Discontinuity Designs," Papers 2412.04265, arXiv.org, revised Sep 2025.
    17. Fernández-Val, Ivan & van Vuuren, Aico & Vella, Francis, 2024. "Nonseparable sample selection models with censored selection rules," Journal of Econometrics, Elsevier, vol. 240(2).
    18. Hsu, Yu-Chin & Shiu, Ji-Liang & Wan, Yuanyuan, 2024. "Testing identification conditions of LATE in fuzzy regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 241(1).
    19. Marinho Bertanha & Andrew H. McCallum & Alexis Payne & Nathan Seegert, 2022. "Bunching estimation of elasticities using Stata," Stata Journal, StataCorp LLC, vol. 22(3), pages 597-624, September.
    20. Jales, Hugo & Ma, Jun & Yu, Zhengfei, 2017. "Optimal bandwidth selection for local linear estimation of discontinuity in density," Economics Letters, Elsevier, vol. 153(C), pages 23-27.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.05210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.