IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v23y2020i2p192-210..html
   My bibliography  Save this article

Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs
[Econometric methods for program evaluation]

Author

Listed:
  • Sebastian Calonico
  • Matias D Cattaneo
  • Max H Farrell

Abstract

SummaryModern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages.

Suggested Citation

  • Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
  • Handle: RePEc:oup:emjrnl:v:23:y:2020:i:2:p:192-210.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utz022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2015. "Inference on Causal Effects in a Generalized Regression Kink Design," Econometrica, Econometric Society, vol. 83, pages 2453-2483, November.
    2. Giovanni Cerulli & Yingying Dong & Arthur Lewbel & Alexander Poulsen, 2017. "Testing Stability of Regression Discontinuity Models," Advances in Econometrics, in: Matias D. Cattaneo & Juan Carlos Escanciano (ed.), Regression Discontinuity Designs, volume 38, pages 317-339, Emerald Publishing Ltd.
    3. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    4. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, Oxford University Press, vol. 122(1), pages 159-208.
    5. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 933-959.
    6. Arai, Yoichi & Ichimura, Hidehiko, 2016. "Optimal bandwidth selection for the fuzzy regression discontinuity estimator," Economics Letters, Elsevier, vol. 141(C), pages 103-106.
    7. Yingying Dong & Arthur Lewbel, 2015. "Identifying the Effect of Changing the Policy Threshold in Regression Discontinuity Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1081-1092, December.
    8. Jasjeet S. Sekhon & Rocío Titiunik, 2017. "On Interpreting the Regression Discontinuity Design as a Local Experiment," Advances in Econometrics, in: Matias D. Cattaneo & Juan Carlos Escanciano (ed.), Regression Discontinuity Designs, volume 38, pages 1-28, Emerald Publishing Ltd.
    9. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    10. Keele, Luke J. & Titiunik, Rocío, 2015. "Geographic Boundaries as Regression Discontinuities," Political Analysis, Cambridge University Press, vol. 23(1), pages 127-155, January.
    11. repec:adr:anecst:y:2008:i:91-92:p:09 is not listed on IDEAS
    12. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    13. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Roc ́ıo Titiunik, 2017. "rdrobust: Software for regression-discontinuity designs," Stata Journal, StataCorp LP, vol. 17(2), pages 372-404, June.
    14. Papay, John P. & Willett, John B. & Murnane, Richard J., 2011. "Extending the regression-discontinuity approach to multiple assignment variables," Journal of Econometrics, Elsevier, vol. 161(2), pages 203-207, April.
    15. Alberto Abadie & Guido W. Imbens, 2008. "Estimation of the Conditional Variance in Paired Experiments," Annals of Economics and Statistics, GENES, issue 91-92, pages 175-187.
    16. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    17. Lee, David S. & Card, David, 2008. "Regression discontinuity inference with specification error," Journal of Econometrics, Elsevier, vol. 142(2), pages 655-674, February.
    18. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    19. Otávio Bartalotti & Quentin Brummet, 2017. "Regression Discontinuity Designs with Clustered Data," Advances in Econometrics, in: Matias D. Cattaneo & Juan Carlos Escanciano (ed.), Regression Discontinuity Designs, volume 38, pages 383-420, Emerald Publishing Ltd.
    20. Matias D. Cattaneo & Juan Carlos Escanciano (ed.), 2017. "Regression Discontinuity Designs," Advances in Econometrics, Emerald Publishing Ltd, volume 38, number aeco.2017.38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias D. Cattaneo & Rocio Titiunik & Gonzalo Vazquez-Bare, 2019. "The Regression Discontinuity Design," Papers 1906.04242, arXiv.org, revised Jun 2020.
    2. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    3. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    4. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    5. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals [Using Maimonides’ rule to estimate the effect of class size on scholastic achievemen," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    6. Bartalotti Otávio, 2019. "Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-26, January.
    7. Matias D. Cattaneo & Luke Keele & Rocío Titiunik & Gonzalo Vazquez-Bare, 2021. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1941-1952, October.
    8. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    10. Yoici Arai & Taisuke Otsu & Myung Hwan Seo, 2022. "Regression discontinuity design with potentially many covariates," STICERD - Econometrics Paper Series 626, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Yoichi Arai & Taisuke Otsu & Myung Hwan Seo, 2021. "Regression Discontinuity Design with Potentially Many Covariates," Papers 2109.08351, arXiv.org, revised Mar 2022.
    12. Ximing Wu, 2021. "Hierarchical Gaussian Process Models for Regression Discontinuity/Kink under Sharp and Fuzzy Designs," Papers 2110.00921, arXiv.org, revised Feb 2022.
    13. Yang Lixiong, 2019. "Regression discontinuity designs with unknown state-dependent discontinuity points: estimation and testing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-18, April.
    14. Xu, Ke-Li, 2017. "Regression discontinuity with categorical outcomes," Journal of Econometrics, Elsevier, vol. 201(1), pages 1-18.
    15. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    16. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    17. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    18. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    19. Crespo Cristian, 2020. "Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 164-181, January.
    20. Deng, Taotao & Hu, Yukun & Ma, Mulan, 2019. "Regional policy and tourism: A quasi-natural experiment," Annals of Tourism Research, Elsevier, vol. 74(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:23:y:2020:i:2:p:192-210.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.