IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2015cf990.html
   My bibliography  Save this paper

Optimal Bandwidth Selection for the Fuzzy Regression Discontinuity Estimator

Author

Listed:
  • Yoichi Arai

    (National Graduate Institute for Policy Studies (GRIPS))

  • Hidehiko Ichimura

    (Faculty of Economics, The University of Tokyo)

Abstract

A new bandwidth selection method for the fuzzy regression discontinuity estimator is proposed. The method chooses two bandwidths simultaneously, one for each side of the cut-off point by using a criterion based on the estimated asymptotic mean square error taking into account a second-order bias term. A simulation study demonstrates the usefulness of the proposed method.

Suggested Citation

  • Yoichi Arai & Hidehiko Ichimura, 2015. "Optimal Bandwidth Selection for the Fuzzy Regression Discontinuity Estimator," CIRJE F-Series CIRJE-F-990, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2015cf990
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2015/2015cf990.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yoichi Arai & Hidehiko Ichimura, 2018. "Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator," Quantitative Economics, Econometric Society, vol. 9(1), pages 441-482, March.
    2. Yingying Dong & Arthur Lewbel, 2015. "Identifying the Effect of Changing the Policy Threshold in Regression Discontinuity Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1081-1092, December.
    3. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    4. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 933-959.
    5. McCrary, Justin, 2008. "Manipulation of the running variable in the regression discontinuity design: A density test," Journal of Econometrics, Elsevier, vol. 142(2), pages 698-714, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    2. Jales, Hugo & Ma, Jun & Yu, Zhengfei, 2017. "Optimal bandwidth selection for local linear estimation of discontinuity in density," Economics Letters, Elsevier, vol. 153(C), pages 23-27.
    3. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    4. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    5. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
    6. Ximing Wu, 2021. "Hierarchical Gaussian Process Models for Regression Discontinuity/Kink under Sharp and Fuzzy Designs," Papers 2110.00921, arXiv.org, revised Feb 2022.
    7. YANAGI, Takahide & 柳, 貴英, 2015. "Regression Discontinuity Designs with Nonclassical Measurement Error," Discussion Papers 2015-09, Graduate School of Economics, Hitotsubashi University.
    8. Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
    9. Jun Ma & Zhengfei Yu, 2020. "Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs," Papers 2008.09263, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    2. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    3. Alessio Gaggero & Getinet Haile, 2020. "Does class size matter in postgraduate education?," Manchester School, University of Manchester, vol. 88(3), pages 489-505, June.
    4. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    5. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    6. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    7. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    8. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
    9. Bertanha, Marinho, 2020. "Regression discontinuity design with many thresholds," Journal of Econometrics, Elsevier, vol. 218(1), pages 216-241.
    10. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    11. Marinho Bertanha & Guido W. Imbens, 2020. "External Validity in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 593-612, July.
    12. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    13. YANAGI, Takahide & 柳, 貴英, 2015. "Regression Discontinuity Designs with Nonclassical Measurement Error," Discussion Papers 2015-09, Graduate School of Economics, Hitotsubashi University.
    14. Xu, Ke-Li, 2017. "Regression discontinuity with categorical outcomes," Journal of Econometrics, Elsevier, vol. 201(1), pages 1-18.
    15. Francesca Carta & Lucia Rizzica, 2015. "Female employment and pre-kindergarten: on the uninteded effects of an Italian reform," Temi di discussione (Economic working papers) 1030, Bank of Italy, Economic Research and International Relations Area.
    16. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," Review of Economic Studies, Oxford University Press, vol. 85(3), pages 1577-1608.
    17. Christopher S. Carpenter & Carlos Dobkin & Casey Warman, 2016. "The Mechanisms of Alcohol Control," Journal of Human Resources, University of Wisconsin Press, vol. 51(2), pages 328-356.
    18. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.
    19. Vergolini, Loris & Zanini, Nadir, 2015. "Away, but not too far from home. The effects of financial aid on university enrolment decisions," Economics of Education Review, Elsevier, vol. 49(C), pages 91-109.
    20. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2015cf990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.