IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.19243.html
   My bibliography  Save this paper

Comparative analysis of financial data differentiation techniques using LSTM neural network

Author

Listed:
  • Dominik Stempie'n
  • Janusz Gajda

Abstract

We compare traditional approach of computing logarithmic returns with the fractional differencing method and its tempered extension as methods of data preparation before their usage in advanced machine learning models. Differencing parameters are estimated using multiple techniques. The empirical investigation is conducted on data from four major stock indices covering the most recent 10-year period. The set of explanatory variables is additionally extended with technical indicators. The effectiveness of the differencing methods is evaluated using both forecast error metrics and risk-adjusted return trading performance metrics. The findings suggest that fractional differentiation methods provide a suitable data transformation technique, improving the predictive model forecasting performance. Furthermore, the generated predictions appeared to be effective in constructing profitable trading strategies for both individual assets and a portfolio of stock indices. These results underline the importance of appropriate data transformation techniques in financial time series forecasting, supporting the application of memory-preserving techniques.

Suggested Citation

  • Dominik Stempie'n & Janusz Gajda, 2025. "Comparative analysis of financial data differentiation techniques using LSTM neural network," Papers 2505.19243, arXiv.org.
  • Handle: RePEc:arx:papers:2505.19243
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.19243
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.19243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.