IDEAS home Printed from https://ideas.repec.org/a/spr/eurase/v11y2021i3d10.1007_s40822-021-00182-5.html
   My bibliography  Save this article

Efficiency in cryptocurrency markets: new evidence

Author

Listed:
  • Carmen López-Martín

    (National Distance Education University (UNED))

  • Sonia Benito Muela

    (National Distance Education University (UNED))

  • Raquel Arguedas

    (National Distance Education University (UNED))

Abstract

In this paper we carried out a comprehensive study of the efficiency in the cryptocurrency markets. The markets under study are: Bitcoin, Litecoin, Ethereum, Ripple, Stellar and Monero. To study the efficiency of these markets, we use a set of five test which are applied in both a static context and dynamic context. The results obtained depend on both the analysis period and the methodology used to test the predictability of the return. However, some conclusions can be drawn: first, we observe that overall, the efficiency degree tends to increase with the time. Second, although the efficiency market seems to change along the period, the changes in the Bitcoin, Litecoin and Ethereum market show a clear tendency that evolves from less to more efficiency. In the case of Ripple, Stellar and Monero, periods of efficiency alternate with periods of inefficient, which is consistent with the adaptive market hypothesis.

Suggested Citation

  • Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
  • Handle: RePEc:spr:eurase:v:11:y:2021:i:3:d:10.1007_s40822-021-00182-5
    DOI: 10.1007/s40822-021-00182-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40822-021-00182-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40822-021-00182-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    2. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    3. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    7. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    8. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2011. "Small sample properties of alternative tests for martingale difference hypothesis," Economics Letters, Elsevier, vol. 110(2), pages 151-154, February.
    9. Akihiko Noda, 2021. "On the evolution of cryptocurrency market efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 433-439, March.
    10. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    11. Caporale, Guglielmo Maria & Plastun, Alex, 2019. "The day of the week effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 31(C).
    12. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    13. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    14. Ambreen Khursheed & Muhammad Naeem & Sheraz Ahmed & Faisal Mustafa & David McMillan, 2020. "Adaptive market hypothesis: An empirical analysis of time –varying market efficiency of cryptocurrencies," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1719574-171, January.
    15. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1-2), pages 27-35, January.
    16. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    17. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    18. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    19. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    20. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    21. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    22. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    23. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    24. Noda, Akihiko, 2016. "A test of the adaptive market hypothesis using a time-varying AR model in Japan," Finance Research Letters, Elsevier, vol. 17(C), pages 66-71.
    25. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    26. repec:cdl:ucsbec:13-89 is not listed on IDEAS
    27. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    28. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    29. Choi, In, 1999. "Testing the Random Walk Hypothesis for Real Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 293-308, May-June.
    30. Tran, Vu Le & Leirvik, Thomas, 2019. "A simple but powerful measure of market efficiency," Finance Research Letters, Elsevier, vol. 29(C), pages 141-151.
    31. Mensi, Walid & Lee, Yun-Jung & Al-Yahyaee, Khamis Hamed & Sensoy, Ahmet & Yoon, Seong-Min, 2019. "Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 31(C), pages 19-25.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. Liu, Jian & Cheng, Cheng & Yang, Xianglin & Yan, Lizhao & Lai, Yongzeng, 2019. "Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    34. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    35. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    36. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
    37. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    38. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    39. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    40. LeRoy, Stephen F, 1989. "Efficient Capital Markets and Martingales," Journal of Economic Literature, American Economic Association, vol. 27(4), pages 1583-1621, December.
    41. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    42. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    43. Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
    44. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    45. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    46. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    47. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    48. Hu, Yang & Valera, Harold Glenn A. & Oxley, Les, 2019. "Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework," Finance Research Letters, Elsevier, vol. 31(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    2. Burke, Matt & Fry, John & Kemp, Sean & Woodhouse, Drew, 2022. "Attention to Authority: The behavioural finance of Covid-19," Finance Research Letters, Elsevier, vol. 49(C).
    3. Mustafa Tevfik Kartal & Mustafa Kevser & Fatih Ayhan, 2023. "Asymmetric effects of global factors on return of cryptocurrencies by novel nonlinear quantile approaches," Economic Change and Restructuring, Springer, vol. 56(3), pages 1515-1535, June.
    4. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    5. Andrew Phiri, 2022. "Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin?," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 373-386, September.
    6. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    7. Zhuhua Jiang & Walid Mensi & Seong-Min Yoon, 2023. "Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    8. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    9. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    10. Zhang, Zehua & Zhao, Ran, 2023. "Good volatility, bad volatility, and the cross section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 89(C).
    11. Jessica Morales Herrera & Ra'ul Salgado-Garc'ia, 2023. "Trend patterns statistics for assessing irreversibility in cryptocurrencies: time-asymmetry versus inefficiency," Papers 2307.08612, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    4. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    5. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    7. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    8. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    9. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    10. Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
    11. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    12. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    13. Majid Mirzaee Ghazani & Mohammad Ali Jafari, 2021. "Cryptocurrencies, gold, and WTI crude oil market efficiency: a dynamic analysis based on the adaptive market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    14. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    15. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    16. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    17. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    18. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    19. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    20. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    More about this item

    Keywords

    Market efficiency; Adaptive market hypothesis; Cryptocurrencies; Random walk; Hurst exponent; Variance ratio test;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurase:v:11:y:2021:i:3:d:10.1007_s40822-021-00182-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.