Efficient Market Hypothesis on the blockchain: A social‐media‐based index for cryptocurrency efficiency
Author
Abstract
Suggested Citation
DOI: 10.1111/fire.12387
Download full text from publisher
References listed on IDEAS
- Anand M. Vijh & Jiawei (Brooke) Wang, 2022. "Negative returns on addition to the S&P 500 index and positive returns on deletion? New evidence on the attractiveness of S&P 500 versus S&P 400 indexes," Financial Management, Financial Management Association International, vol. 51(4), pages 1127-1164, December.
- Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
- Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
- Dominik M. Rösch & Avanidhar Subrahmanyam & Mathijs A. van Dijk, 2017. "The Dynamics of Market Efficiency," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1151-1187.
- Polyzos, Efstathios & Wang, Fang, 2022. "Twitter and market efficiency in energy markets: Evidence using LDA clustered topic extraction," Energy Economics, Elsevier, vol. 114(C).
- Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
- Tong, Zezheng & Goodell, John W. & Shen, Dehua, 2022. "Assessing causal relationships between cryptocurrencies and investor attention: New results from transfer entropy methodology," Finance Research Letters, Elsevier, vol. 50(C).
- Basse, Tobias & Klein, Tony & Vigne, Samuel A. & Wegener, Christoph, 2021. "U.S. stock prices and the dot.com-bubble: Can dividend policy rescue the efficient market hypothesis?," Journal of Corporate Finance, Elsevier, vol. 67(C).
- Ante, Lennart, 2023. "How Elon Musk's Twitter activity moves cryptocurrency markets," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
- Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Asl, Mahdi Ghaemi & Jalalifar, Saba, 2021. "Financing the green projects: Market efficiency and volatility persistence of green versus conventional bonds, and the comparative effects of health and financial crises," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Alex Frino & Caihong Xu & Z. Ivy Zhou, 2022. "Are option traders more informed than Twitter users? A PVAR analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1755-1771, September.
- Lüdering, Jochen & Tillmann, Peter, 2020. "Monetary policy on twitter and asset prices: Evidence from computational text analysis," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022.
"Can we measure inflation expectations using Twitter?,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
- Cristina Angelico & Juri Marcucci & Marcello Miccoli & Filippo Quarta, 2021. "Can we measure inflation expectations using Twitter?," Temi di discussione (Economic working papers) 1318, Bank of Italy, Economic Research and International Relations Area.
- Khalfaoui, Rabeh & Gozgor, Giray & Goodell, John W., 2023.
"Impact of Russia-Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis,"
Finance Research Letters, Elsevier, vol. 52(C).
- Rabeh Khalfaoui & Giray Gozgor & John Goodell, 2022. "Impact of Russia-Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis," Post-Print hal-03797565, HAL.
- Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
- E. Mnif & A. Jarboui & K. Mouakhar, 2020. "How the Cryptocurrency Market Has Performed during COVID 19? A Multifractal Analysis," Post-Print hal-04457136, HAL.
- Jalan, Akanksha & Matkovskyy, Roman & Urquhart, Andrew & Yarovaya, Larisa, 2023.
"The role of interpersonal trust in cryptocurrency adoption,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
- Akanksha Jalan & Roman Matkovskyy & Andrew Urquhart & Larisa Yarovaya, 2023. "The role of interpersonal trust in cryptocurrency adoption," Post-Print hal-03946536, HAL.
- Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
- Montasser, Ghassen El & Charfeddine, Lanouar & Benhamed, Adel, 2022. "COVID-19, cryptocurrencies bubbles and digital market efficiency: sensitivity and similarity analysis," Finance Research Letters, Elsevier, vol. 46(PA).
- Sarkodie, Samuel Asumadu & Ahmed, Maruf Yakubu & Owusu, Phebe Asantewaa, 2022. "COVID-19 pandemic improves market signals of cryptocurrencies–evidence from Bitcoin, Bitcoin Cash, Ethereum, and Litecoin," Finance Research Letters, Elsevier, vol. 44(C).
- Paul P. Momtaz, 2021. "The Pricing and Performance of Cryptocurrency," The European Journal of Finance, Taylor & Francis Journals, vol. 27(4-5), pages 367-380, March.
- Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
- Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022.
"Making text count: Economic forecasting using newspaper text,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2020. "Making text count: economic forecasting using newspaper text," Bank of England working papers 865, Bank of England.
- Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
- Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
- Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2021. "On equity market inefficiency during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of Twitter sentiment on renewable energy stocks," Energy Economics, Elsevier, vol. 76(C), pages 153-169.
- Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
- Al-Yahyaee, Khamis Hamed & Mensi, Walid & Ko, Hee-Un & Yoon, Seong-Min & Kang, Sang Hoon, 2020. "Why cryptocurrency markets are inefficient: The impact of liquidity and volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Xianzheng Zhou & Hui Zhou & Huaigang Long, 2023. "Forecasting the equity premium: Do deep neural network models work?," Modern Finance, Modern Finance Institute, vol. 1(1), pages 1-11.
- Shahzad, Syed Jawad Hussain & Anas, Muhammad & Bouri, Elie, 2022. "Price explosiveness in cryptocurrencies and Elon Musk's tweets," Finance Research Letters, Elsevier, vol. 47(PB).
- Polyzos, Efstathios, 2023. "Inflation and the war in Ukraine: Evidence using impulse response functions on economic indicators and Twitter sentiment," Research in International Business and Finance, Elsevier, vol. 66(C).
- Ameet Kumar Banerjee, 2022. "You sneeze, and the markets are paranoid: the fear, uncertainty and distress sentiments impact of the COVID-19 pandemic on the stock–bond correlation," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 23(5), pages 652-668, September.
- repec:bla:eufman:v:4:y:1998:i:1:p:91-103 is not listed on IDEAS
- Mensi, Walid & Lee, Yun-Jung & Vinh Vo, Xuan & Yoon, Seong-Min, 2021. "Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Suwan (Cheng) Long & Brian Lucey & Ying Xie & Larisa Yarovaya, 2023. "“I just like the stock”: The role of Reddit sentiment in the GameStop share rally," The Financial Review, Eastern Finance Association, vol. 58(1), pages 19-37, February.
- Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
- Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Samuel Kaplan & Efstathios Polyzos & David Tercero-Lucas, 2025. "Crypto Listens: Asymmetric Reactions to Text-based Signals in Central Bank Communications," Working Papers 365, Red Nacional de Investigadores en Economía (RedNIE).
- Hoang, Lai & Vo, Duc Hong, 2024. "Google search and cross-section of cryptocurrency returns and trading activities," Journal of Behavioral and Experimental Finance, Elsevier, vol. 44(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Polyzos, Efstathios & Wang, Fang, 2022. "Twitter and market efficiency in energy markets: Evidence using LDA clustered topic extraction," Energy Economics, Elsevier, vol. 114(C).
- Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
- Tetsuya Takaishi, 2025. "Impact of the COVID-19 pandemic on the financial market efficiency of price returns, absolute returns, and volatility increment: Evidence from stock and cryptocurrency markets," Papers 2504.18960, arXiv.org.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
- Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
- OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Robert Mudida & Nuruddeen Abu, 2021.
"Market efficiency and volatility persistence of cryptocurrency during pre‐ and post‐crash periods of Bitcoin: Evidence based on fractional integration,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1318-1335, January.
- Yaya, OlaOluwa S & Ogbonna, Ephraim A & Mudida, Robert, 2019. "Market Efficiency and Volatility Persistence of Cryptocurrency during Pre- and Post-Crash Periods of Bitcoin: Evidence based on Fractional Integration," MPRA Paper 91450, University Library of Munich, Germany.
- Bouteska, Ahmed & Hajek, Petr & Abedin, Mohammad Zoynul & Dong, Yizhe, 2023. "Effect of twitter investor engagement on cryptocurrencies during the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 64(C).
- dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
- Polyzos, Efstathios, 2023. "Inflation and the war in Ukraine: Evidence using impulse response functions on economic indicators and Twitter sentiment," Research in International Business and Finance, Elsevier, vol. 66(C).
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Liu, Jian & Julaiti, Jiansuer & Gou, Shangde, 2024. "Decomposing interconnectedness: A study of cryptocurrency spillover effects in global financial markets," Finance Research Letters, Elsevier, vol. 61(C).
- Khaled Mokni & Ghassen El Montasser & Ahdi Noomen Ajmi & Elie Bouri, 2024. "On the efficiency and its drivers in the cryptocurrency market: the case of Bitcoin and Ethereum," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
- Xinyu Huang & Weihao Han & David Newton & Emmanouil Platanakis & Dimitrios Stafylas & Charles Sutcliffe, 2023. "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, Taylor & Francis Journals, vol. 29(7), pages 800-825, May.
- Saji Thazhungal Govindan Nair, 2021. "On extreme value theory in the presence of technical trend: pre and post Covid-19 analysis of cryptocurrency markets," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 14(4), pages 533-561, December.
- José Almeida & Tiago Cruz Gonçalves, 2024. "Cryptocurrency market microstructure: a systematic literature review," Annals of Operations Research, Springer, vol. 332(1), pages 1035-1068, January.
- Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
- Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019, January-A.
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:finrev:v:59:y:2024:i:3:p:807-829. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/efaaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.