IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/91450.html
   My bibliography  Save this paper

Market Efficiency and Volatility Persistence of Cryptocurrency during Pre- and Post-Crash Periods of Bitcoin: Evidence based on Fractional Integration

Author

Listed:
  • Yaya, OlaOluwa S
  • Ogbonna, Ephraim A
  • Mudida, Robert

Abstract

This paper investigates both market efficiency and volatility persistence in 12 cryptocurrencies during pre-crash and post-crash periods. We were motivated by the erroneous belief of some authors that driving currency, Bitcoin is inefficient. By considering robust fractional integration methods in linear and nonlinear set up, we found that markets of Bitcoin and most altcoins considered in our samples can be dubbed as efficient, and these are highly volatile particularly in the post-crash sample that we are now. These volatilities will then persist for shorter period than in the pre-crash period. Our work therefore renders important information to cryptocurrency market participants and portfolio managers.

Suggested Citation

  • Yaya, OlaOluwa S & Ogbonna, Ephraim A & Mudida, Robert, 2019. "Market Efficiency and Volatility Persistence of Cryptocurrency during Pre- and Post-Crash Periods of Bitcoin: Evidence based on Fractional Integration," MPRA Paper 91450, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:91450
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/91450/1/MPRA_paper_91450.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    2. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    3. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    4. Grobys, Klaus & Sapkota, Niranjan, 2019. "Cryptocurrencies and momentum," Economics Letters, Elsevier, vol. 180(C), pages 6-10.
    5. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    6. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    7. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    10. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    11. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    12. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
    13. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    14. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
    15. Guglielmo Maria Caporale & Alex Plastun & Viktor Oliinyk, 2019. "Bitcoin fluctuations and the frequency of price overreactions," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 109-131, June.
    16. Javier Biscarri & Fernando Gracia, 2004. "Stock market cycles and stock market development in Spain," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(2), pages 127-151, July.
    17. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Bouri, Elie & Lau, Chi Keung Marco & Lucey, Brian & Roubaud, David, 2019. "Trading volume and the predictability of return and volatility in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 340-346.
    20. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    21. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    22. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    23. Amélie Charles & Olivier Darné, 2019. "Volatility estimation for cryptocurrencies: Further evidence with jumps and structural breaks," Economics Bulletin, AccessEcon, vol. 39(2), pages 954-968.
    24. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    25. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    26. Hassler, Uwe & Wolters, Jurgen, 1994. "On the power of unit root tests against fractional alternatives," Economics Letters, Elsevier, vol. 45(1), pages 1-5, May.
    27. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    28. Gil-Alana, Luis A. & Gupta, Rangan & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2018. "Market efficiency of Baltic stock markets: A fractional integration approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 251-262.
    29. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    30. Beat Weber, 2014. "Bitcoin – The Promise and Limits of Private Innovation in Monetary and Payment Systems," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 53-66.
    31. Diebold, Francis X. & Rudebusch, Glenn D., 1991. "On the power of Dickey-Fuller tests against fractional alternatives," Economics Letters, Elsevier, vol. 35(2), pages 155-160, February.
    32. Gonzalez, Liliana & Powell, John G. & Shi, Jing & Wilson, Antony, 2005. "Two centuries of bull and bear market cycles," International Review of Economics & Finance, Elsevier, vol. 14(4), pages 469-486.
    33. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    34. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    35. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    36. Kumar, Anoop S. & Anandarao, S., 2019. "Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 448-458.
    37. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    38. Luis A. Gil-Alana & OlaOluwa S. Yaya, 2021. "Testing fractional unit roots with non-linear smooth break approximations using Fourier functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(13-15), pages 2542-2559, November.
    39. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2002. "A Fractional Dickey-Fuller Test for Unit Roots," Econometrica, Econometric Society, vol. 70(5), pages 1963-2006, September.
    40. Walter Enders & Junsoo Lee, 2012. "A Unit Root Test Using a Fourier Series to Approximate Smooth Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 574-599, August.
    41. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    42. Enders, Walter & Lee, Junsoo, 2012. "The flexible Fourier form and Dickey–Fuller type unit root tests," Economics Letters, Elsevier, vol. 117(1), pages 196-199.
    43. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    44. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    45. Beat Weber, 2016. "Bitcoin and the legitimacy crisis of money," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 40(1), pages 17-41.
    46. David Vidal-Tomás & Ana M. Ibáñez & José E. Farinós, 2019. "Weak efficiency of the cryptocurrency market: a market portfolio approach," Applied Economics Letters, Taylor & Francis Journals, vol. 26(19), pages 1627-1633, November.
    47. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    48. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    49. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    50. Jakub Bartos, 2015. "Does Bitcoin follow the hypothesis of efficient market?," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(2), pages 10-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
    2. Pedro Palos-Sanchez & Jose Ramon Saura & Raquel Ayestaran, 2021. "An Exploratory Approach to the Adoption Process of Bitcoin by Business Executives," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    3. OlaOluwa Yaya & Rafiu Akano & Oluwasegun Adekoya, 2023. "Market Efficiency and Volatility Persistence of Green Investments Before and During the COVID-19 Pandemic," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 4(1), pages 1-6.
    4. Andrew Phiri, 2022. "Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin?," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 373-386, September.
    5. Florentina Șoiman & Jean-Guillaume Dumas & Sonia Jimenez-Garces, 2022. "The return of (I)DeFiX [Le rendement de (I)DeFiX]," Working Papers hal-03625891, HAL.
    6. Duan, Kun & Gao, Yang & Mishra, Tapas & Satchell, Stephen, 2023. "Efficiency dynamics across segmented Bitcoin Markets: Evidence from a decomposition strategy," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    7. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    8. Olubusoye, Olusanya E & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula, 2021. "An Information-Based Index of Uncertainty and the predictability of Energy Prices," MPRA Paper 109839, University Library of Munich, Germany.
    9. José Antonio Núñez-Mora & Mario Iván Contreras-Valdez & Roberto Joaquín Santillán-Salgado, 2023. "Risk Premium of Bitcoin and Ethereum during the COVID-19 and Non-COVID-19 Periods: A High-Frequency Approach," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    10. Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
    11. Yaya, OlaOluwa S. & Lukman, Adewale F. & Vo, Xuan Vinh, 2022. "Persistence and volatility spillovers of bitcoin price to gold and silver prices," Resources Policy, Elsevier, vol. 79(C).
    12. Kavya Clanganthuruthil Sajeev & Mohd Afjal, 2022. "Contagion effect of cryptocurrency on the securities market: a study of Bitcoin volatility using diagonal BEKK and DCC GARCH models," SN Business & Economics, Springer, vol. 2(6), pages 1-21, June.
    13. Bozoklu, Seref & Yilanci, Veli & Gorus, Muhammed Sehid, 2020. "Persistence in per capita energy consumption: A fractional integration approach with a Fourier function," Energy Economics, Elsevier, vol. 91(C).
    14. Rehman, Mobeen Ur & Katsiampa, Paraskevi & Zeitun, Rami & Vo, Xuan Vinh, 2023. "Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies," Emerging Markets Review, Elsevier, vol. 55(C).
    15. Esparcia, Carlos & Escribano, Ana & Jareño, Francisco, 2023. "Did cryptomarket chaos unleash Silvergate's bankruptcy? investigating the high-frequency volatility and connectedness behind the collapse," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    16. Florentina c{S}oiman & Guillaume Dumas & Sonia Jimenez-Garces, 2022. "The return of (I)DeFiX," Papers 2204.00251, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    6. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    7. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    8. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    9. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    10. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    11. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    12. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    13. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    14. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    15. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    16. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    17. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    18. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    19. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    More about this item

    Keywords

    Bitcoin; Cryptocurrency; Market efficiency; Fractional integration; Virtual currency;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:91450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.