IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14265.html
   My bibliography  Save this paper

How does Bike Absence Influence Mode Shifts Among Dockless Bike-Sharing Users? Evidence From Nanjing, China

Author

Listed:
  • Hongjun Cui
  • Zhixiao Ren
  • Xinwei Ma
  • Minqing Zhu

Abstract

Dockless bike-sharing (DBS) users often encounter difficulties in finding available bikes at their preferred times and locations. This study examines the determinants of the users' mode shifts in the context of bike absence, using survey data from Nanjing, China. An integrated choice and latent variable based on multinomial logit was employed to investigate the impact of socio-demographic, trip characteristics, and psychological factors on travel mode choices. Mode choice models were estimated with seven mode alternatives, including bike-sharing related choices (waiting in place, picking up bikes on the way, and picking up bikes on a detour), bus, taxi, riding hailing, and walk. The findings show that under shared-bike unavailability, users prefer to pick up bikes on the way rather than take detours, with buses and walking as favored alternatives to shared bikes. Lower-educated users tend to wait in place, showing greater concern for waiting time compared to riding time. Lower-income users, commuters, and females prefer picking up bikes on the way, while non-commuters and males opt for detours. The insights gained in this study can provide ideas for solving the problems of demand estimation, parking area siting, and multi-modal synergies of bike sharing to enhance utilization and user satisfaction.

Suggested Citation

  • Hongjun Cui & Zhixiao Ren & Xinwei Ma & Minqing Zhu, 2025. "How does Bike Absence Influence Mode Shifts Among Dockless Bike-Sharing Users? Evidence From Nanjing, China," Papers 2503.14265, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14265
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14265
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    2. Ning Huan & Stephane Hess & Enjian Yao, 2022. "Understanding the effects of travel demand management on metro commuters’ behavioural loyalty: a hybrid choice modelling approach," Transportation, Springer, vol. 49(2), pages 343-372, April.
    3. Maren Schnieder, 2023. "Ebike Sharing vs. Bike Sharing: Demand Prediction Using Deep Neural Networks and Random Forests," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    4. Mao Ye & Yajing Chen & Guixin Yang & Bo Wang & Qizhou Hu, 2020. "Mixed Logit Models for Travelers’ Mode Shifting Considering Bike-Sharing," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    5. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    6. Sharon Datner & Tal Raviv & Michal Tzur & Daniel Chemla, 2019. "Setting Inventory Levels in a Bike Sharing Network," Service Science, INFORMS, vol. 53(1), pages 62-76, February.
    7. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    8. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Páez, Antonio & Whalen, Kate, 2010. "Enjoyment of commute: A comparison of different transportation modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 537-549, August.
    10. Jie Lyu & Jing Zhang, 2021. "An Empirical Study into Consumer Acceptance of Dockless Bikes Sharing System Based on TAM," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    11. Mor Kaspi & Tal Raviv & Michal Tzur, 2017. "Bike-sharing systems: User dissatisfaction in the presence of unusable bicycles," IISE Transactions, Taylor & Francis Journals, vol. 49(2), pages 144-158, February.
    12. Wang, Chih-Hao & Akar, Gulsah & Guldmann, Jean-Michel, 2015. "Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University," Journal of Transport Geography, Elsevier, vol. 42(C), pages 122-130.
    13. Dong, Zhongpeng & Fan, Zhi-Ping & Wang, Ningning, 2023. "An analysis of pricing strategy for bike-sharing services: The role of the inconvenience cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    14. Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun, 2021. "Modeling bike-sharing demand using a regression model with spatially varying coefficients," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Picasso, Emilio & Postorino, Maria Nadia & Bonoli-Escobar, Mariano & Stewart-Harris, Maria, 2020. "Car-sharing vs bike-sharing: A choice experiment to understand young people behaviour," Transport Policy, Elsevier, vol. 97(C), pages 121-128.
    16. Ashish Kabra & Elena Belavina & Karan Girotra, 2020. "Bike-Share Systems: Accessibility and Availability," Management Science, INFORMS, vol. 66(9), pages 3803-3824, September.
    17. Ioannis Politis & Ioannis Fyrogenis & Efthymis Papadopoulos & Anastasia Nikolaidou & Eleni Verani, 2020. "Shifting to Shared Wheels: Factors Affecting Dockless Bike-Sharing Choice for Short and Long Trips," Sustainability, MDPI, vol. 12(19), pages 1-25, October.
    18. repec:xrs:meawpa:02009 is not listed on IDEAS
    19. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.
    20. McFadden, Daniel, 1987. "Regression-based specification tests for the multinomial logit model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 63-82.
    21. Kaplan, Sigal & Manca, Francesco & Nielsen, Thomas Alexander Sick & Prato, Carlo Giacomo, 2015. "Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior," Tourism Management, Elsevier, vol. 47(C), pages 34-46.
    22. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    23. Dziekan, Katrin & Kottenhoff, Karl, 2007. "Dynamic at-stop real-time information displays for public transport: effects on customers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 489-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    2. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Silva, Maria Clara Martins & Aloise, Daniel & Jena, Sanjay Dominik, 2024. "Data-driven prioritization strategies for inventory rebalancing in bike-sharing systems," Omega, Elsevier, vol. 129(C).
    4. Zhou, Yu & Chen, Yang & Liu, Shenyan & Kou, Gang, 2024. "Availability simulation and transfer prediction for bike sharing systems based on discrete event simulation," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    5. Andrea Bardi & Luca Mantecchini & Denis Grasso & Filippo Paganelli & Caterina Malandri, 2019. "Flexible Mobile Hub for E-Bike Sharing and Cruise Tourism: A Case Study," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    6. Shi, Ziyi & Xu, Meng & Song, Yancun & Zhu, Zheng, 2024. "Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    7. Kene Boun My & Quang-Huy Nguyen & Phu Nguyen-Van & Thi Kim Cuong Pham & Anne Stenger & Tuyen Tiet & Nguyen To-The, 2025. "Farmers' preferences toward organic certification scheme: Evidence from a discrete choice experiment in Northern Vietnam," EconomiX Working Papers 2025-6, University of Paris Nanterre, EconomiX.
    8. Fu, Chenyi & Zhu, Ning & Pinedo, Michael & Ma, Shoufeng, 2025. "Station-based, free-float, or hybrid: An operating mode analysis of a bike-sharing system," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    9. Ababio-Donkor, Augustus & Saleh, Wafaa & Fonzone, Achille, 2020. "The role of personal norms in the choice of mode for commuting," Research in Transportation Economics, Elsevier, vol. 83(C).
    10. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    11. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    12. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    13. Érika Martins Silva Ramos & Cecilia Jakobsson Bergstad, 2021. "The Psychology of Sharing: Multigroup Analysis among Users and Non-Users of Carsharing," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    15. Qiao‐Chu He & Tiantian Nie & Yun Yang & Zuo‐Jun Shen, 2021. "Beyond Repositioning: Crowd‐Sourcing and Geo‐Fencing for Shared‐Mobility Systems," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3448-3466, October.
    16. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    17. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    18. Van Acker, Veronique & Ho, Loan & Mulley, Corinne, 2021. "“Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 214-227.
    19. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.
    20. Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Does distance matter? Exploring the links among values, motivations, home location, and satisfaction in walking trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 198-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.