IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v181y2024ics1366554523003629.html
   My bibliography  Save this article

Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning

Author

Listed:
  • Shi, Ziyi
  • Xu, Meng
  • Song, Yancun
  • Zhu, Zheng

Abstract

The advent of electric bikes, or ebikes, has significantly enhanced competitiveness of bike-sharing systems, providing benefits to both riders (comfort during uphill and long-distance rides), platforms (more profit), and the environment. Operating such a hybrid bike-sharing system, i.e., with both bikes and ebikes, in a competitive multi-platform market, can be challenging due to the complex and unpredictable interplay among heterogeneous market participants, which becomes more pronounced with the ebike varying battery, and dynamic demand. Most related research is predicated on the assumption of a monopoly market, which is not always the case: in worldwide capital-oriented markets, many firms will quickly imitate and join in rapidly developing fields for profits. Thus, this paper addresses platforms’ hybrid bike-sharing system operation problem with time-varying ebike pricing and rebalancing strategy in consideration of competition. We consider two docked hybrid bike-sharing platforms with charging stations at the site. Platforms utilize trucks for their own rebalancing operation including bike, ebike and mixed bike/ebike relocation tasks. We combine the Markov decision process (MDP) model with game theory, and establish the dual-platform MDP framework in which one mainstream platform and one competing platform optimize their profits by dynamic pricing and bike/ebike rebalancing based on highly dynamic and stochastic demand. Users’ choice is described by a modified nested logit model and the endogenous demand is generated. We develop the tailored double dueling deep Q-network for solving dynamic gaming. A series of experiments are conducted based on the real-world dataset in Shenzhen and several strategy combinations are compared. The results show the win–win situation where both platforms improve profits with a higher market ratio and demonstrate how to introduce and operate ebikes in the system by analyzing detailed strategies in different games.

Suggested Citation

  • Shi, Ziyi & Xu, Meng & Song, Yancun & Zhu, Zheng, 2024. "Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003629
    DOI: 10.1016/j.tre.2023.103374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.