IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16738-d1298089.html
   My bibliography  Save this article

Can Docked Bike-Sharing Systems Reach Their Dual Sustainability in Terms of Environmental Benefits and Financial Operations? A Comparative Study from Nanjing, 2017 and 2023

Author

Listed:
  • Yixiao Liu

    (School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Province Engineering Research Center of Spatial Big Data, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China)

  • Wenshan Liu

    (School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China)

  • Rui Zhao

    (School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China)

  • Lixin Tian

    (School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Province Engineering Research Center of Spatial Big Data, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
    Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang 212013, China)

Abstract

In this paper, we investigate the sustainability of docked bike-sharing in Nanjing in terms of environmental benefits and financial operations by comparing the data of March 2017 and March 2023 in Nanjing. We modify a community detection method, give and prove dynamic boundary conditions for the objective function of the heuristic algorithm, and realize the estimation of the rebalancing coefficients for this mega-system, thus obtaining more accurate emission factors. We find that there are significant differences in the results obtained from environmental benefit assessments over time. Further, there are also significant differences at the national level. This may signify that the assessment data of one country’s system cannot give a direct reference for another country’s system. Second, we considered the economic basis required for the environmental benefits of docked bike-sharing systems. We have calculated the sustainability of the system’s financial operations by considering its revenues over the next nine years, including the cost of facility inputs, facility upgrades, dispatching costs, labor costs, maintenance costs, and the time value of money. The results show a 4.6-fold difference in emission factors between 2017 and 2023; comparing 2017 to 2023 (when demand loss has been severe), the investment in 2017 will be recouped 2 years later than in 2023. Switching distribution vehicles from fuel vehicles to electric trikes would severely deteriorate the operator’s key financial metrics while only reducing the emission factor value by 8.64 gCO 2 eq/km, leading to an unsustainable system. This signals the potential for the financial unsustainability, or even bankruptcy, of operators if the requirements for sustained emissions reductions from the bike-sharing system are divorced from the form of the economy on which it is sustainably operated. Finally, we consider the geographical patterns between environmental benefits and financial operations. We find that financial sustainability varies across geographic locations. Under financial sustainability, we gave emission factors under the mix distribution vehicle scenario.

Suggested Citation

  • Yixiao Liu & Wenshan Liu & Rui Zhao & Lixin Tian, 2023. "Can Docked Bike-Sharing Systems Reach Their Dual Sustainability in Terms of Environmental Benefits and Financial Operations? A Comparative Study from Nanjing, 2017 and 2023," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16738-:d:1298089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2016. "Bike-share rebalancing strategies, patterns, and purpose," Journal of Transport Geography, Elsevier, vol. 55(C), pages 22-39.
    2. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    3. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    4. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    5. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96g9c9nd, Institute of Transportation Studies, UC Berkeley.
    6. Shaheen, Susan PhD & Cohen, Adam & Martin, Elliot PhD, 2013. "Public Bikesharing in North America: Early Operator Understanding and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1x26m6z7, Institute of Transportation Studies, UC Berkeley.
    7. Yi-Wen Kuo & Cheng-Hsien Hsieh & Yu-Chen Hung, 2021. "Non-linear characteristics in switching intention to use a docked bike-sharing system," Transportation, Springer, vol. 48(3), pages 1459-1479, June.
    8. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    9. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    10. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    11. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    12. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    13. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    14. Zhang, Haoran & Song, Xuan & Long, Yin & Xia, Tianqi & Fang, Kai & Zheng, Jianqin & Huang, Dou & Shibasaki, Ryosuke & Liang, Yongtu, 2019. "Mobile phone GPS data in urban bicycle-sharing: Layout optimization and emissions reduction analysis," Applied Energy, Elsevier, vol. 242(C), pages 138-147.
    15. Vilaça, Mariana & Santos, Gonçalo & Oliveira, Mónica S.A. & Coelho, Margarida C. & Correia, Gonçalo H.A., 2022. "Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility," Applied Energy, Elsevier, vol. 310(C).
    16. Lei, Yiyuan & Ozbay, Kaan, 2021. "A robust analysis of the impacts of the stay-at-home policy on taxi and Citi Bike usage: A case study of Manhattan," Transport Policy, Elsevier, vol. 110(C), pages 487-498.
    17. Ricardo Javier Bonilla‐Alicea & Bryan C. Watson & Ziheng Shen & Laura Tamayo & Cassandra Telenko, 2020. "Life cycle assessment to quantify the impact of technology improvements in bike‐sharing systems," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 138-148, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    2. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    5. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    6. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    7. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    8. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    9. Yu, Qing & Xie, Yingkun & Li, Weifeng & Zhang, Haoran & Liu, Xiaolei & Shang, Wen-Long & Chen, Jinyu & Yang, Dongyuan & Yan, Jinyue, 2022. "GPS data in urban bicycle-sharing: Dynamic electric fence planning with assessment of resource-saving and potential energy consumption increasement," Applied Energy, Elsevier, vol. 322(C).
    10. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    12. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    13. Jara-Díaz, Sergio & Latournerie, André & Tirachini, Alejandro & Quitral, Félix, 2022. "Optimal pricing and design of station-based bike-sharing systems: A microeconomic model," Economics of Transportation, Elsevier, vol. 31(C).
    14. Wen-I Lin & Justin Spinney, 2021. "Mobilising the dispositive: Exploring the role of dockless public bike sharing in transforming urban governance in Shanghai," Urban Studies, Urban Studies Journal Limited, vol. 58(10), pages 2095-2116, August.
    15. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    16. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    17. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    18. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    19. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    20. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16738-:d:1298089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.