IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003454.html
   My bibliography  Save this article

A bi-level approach for optimal vehicle relocating in Mobility-On-Demand systems with approximate dynamic programming and coverage control

Author

Listed:
  • Huang, Yunping
  • Zhu, Pengbo
  • Zhong, Renxin
  • Geroliminis, Nikolas

Abstract

For Mobility-on-Demand systems, the imbalance between vehicle supply and demand is a long-standing challenge, leading to losses of orders and long waiting times. Relocating idle vehicles to high-demand regions can enhance system efficiency, thus improving the quality of service. Enforcing vehicle relocation via either link-node or grid-based representation makes it hard to capture the interrelated dynamics with private vehicles while being computationally intensive. The macroscopic fundamental diagram (MFD) provides a powerful tool to model the interrelated dynamics while individual vehicle details may be absent in the regional-level representation. Therefore, we propose a bi-level rebalancing scheme to maximize the served orders in the system. The urban area is first partitioned into several subregions. For the upper level, the interrelated dynamics of private vehicles and on-demand vehicles are modeled based on the MFD. Then a stochastic programming problem is formulated and solved using Approximate Dynamic Programming (ADP) to determine the number of desired vehicles in each subregion and cross-border. For the lower level, a Voronoi-based distributed coverage control algorithm is implemented by each vehicle to obtain position guidance efficiently. The bi-level framework is evaluated on a simulator of the real road network of Shenzhen, China. Simulation results demonstrate that, compared to other policies, the proposed approach can serve more requests with less waiting time.

Suggested Citation

  • Huang, Yunping & Zhu, Pengbo & Zhong, Renxin & Geroliminis, Nikolas, 2024. "A bi-level approach for optimal vehicle relocating in Mobility-On-Demand systems with approximate dynamic programming and coverage control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003454
    DOI: 10.1016/j.tre.2024.103754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi Diao & Hui Kong & Jinhua Zhao, 2021. "Impacts of transportation network companies on urban mobility," Nature Sustainability, Nature, vol. 4(6), pages 494-500, June.
    2. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.
    3. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    4. Zhu, Zheng & Ke, Jintao & Wang, Hai, 2021. "A mean-field Markov decision process model for spatial-temporal subsidies in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 540-565.
    5. Alisoltani, Negin & Leclercq, Ludovic & Zargayouna, Mahdi, 2021. "Can dynamic ride-sharing reduce traffic congestion?," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 212-246.
    6. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    7. Cai, Zeen & Mo, Dong & Geng, Maosi & Tang, Wei & Chen, Xiqun Michael, 2023. "Integrating ride-sourcing with electric vehicle charging under mixed fleets and differentiated services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    8. Wang, Dujuan & Wang, Qi & Yin, Yunqiang & Cheng, T.C.E., 2023. "Optimization of ride-sharing with passenger transfer via deep reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    9. Tang, Wei & Xie, Ningke & Mo, Dong & Cai, Zeen & Lee, Der-Horng & Chen, Xiqun (Michael), 2023. "Optimizing subsidy strategies of the ride-sourcing platform under government regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    10. Can Chen & Nikolas Geroliminis & Renxin Zhong, 2024. "An Iterative Adaptive Dynamic Programming Approach for Macroscopic Fundamental Diagram-Based Perimeter Control and Route Guidance," Transportation Science, INFORMS, vol. 58(4), pages 896-918, July.
    11. Yu, Xinlian & Gao, Song & Hu, Xianbiao & Park, Hyoshin, 2019. "A Markov decision process approach to vacant taxi routing with e-hailing," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 114-134.
    12. Negin Alisoltani & Mostafa Ameli & Mahdi Zargayouna & Ludovic Leclercq, 2022. "Space-time clustering-based method to optimize shareability in real-time ride-sharing," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-25, January.
    13. Si, Jinhua & He, Fang & Lin, Xi & Tang, Xindi, 2024. "Vehicle dispatching and routing of on-demand intercity ride-pooling services: A multi-agent hierarchical reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    14. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
    15. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    16. Lei, Chao & Jiang, Zhoutong & Ouyang, Yanfeng, 2020. "Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 60-75.
    17. Liu, Yang & Wu, Fanyou & Lyu, Cheng & Li, Shen & Ye, Jieping & Qu, Xiaobo, 2022. "Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    18. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    19. Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "The dynamic ride-hailing sharing problem with multiple vehicle types and user classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    20. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaohan & Chen, Xiqun (Michael) & Xie, Chi & Cheong, Taesu, 2024. "Coordinative dispatching of shared and public transportation under passenger flow outburst," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    2. Yining Liu & Yanfeng Ouyang, 2022. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Papers 2208.02219, arXiv.org, revised Jun 2023.
    3. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    4. Liu, Yining & Ouyang, Yanfeng, 2023. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Meijian Yang & Enjun Xia, 2021. "A Systematic Literature Review on Pricing Strategies in the Sharing Economy," Sustainability, MDPI, vol. 13(17), pages 1-28, August.
    6. Si, Jinhua & He, Fang & Lin, Xi & Tang, Xindi, 2024. "Vehicle dispatching and routing of on-demand intercity ride-pooling services: A multi-agent hierarchical reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    7. Mo, Dong & Wang, Hai & Cai, Zeen & Szeto, W.Y. & Chen, Xiqun (Michael), 2024. "Modeling and regulating a ride-sourcing market integrated with vehicle rental services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    8. Yang, Yue & Umboh, Seeun William & Ramezani, Mohsen, 2024. "Freelance drivers with a decline choice: Dispatch menus in on-demand mobility services for assortment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    9. García-Herrera, Alisson & Basso, Leonardo J. & Tirachini, Alejandro, 2024. "Microeconomic analysis of ridesourcing market regulation policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    10. Shi, Ziyi & Xu, Meng & Song, Yancun & Zhu, Zheng, 2024. "Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    11. Lei, Zengxiang & Ukkusuri, Satish V., 2023. "Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    12. Xiangyu Huang & Yan Cheng & Jing Jin & Aiqing Kou, 2024. "Research on Dynamic Subsidy Based on Deep Reinforcement Learning for Non-Stationary Stochastic Demand in Ride-Hailing," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    13. Chen, Junlin & Xiong, Jinghong & Chen, Guobao & Liu, Xin & Yan, Peng & Jiang, Hai, 2024. "Optimal instant discounts of multiple ride options at a ride-hailing aggregator," European Journal of Operational Research, Elsevier, vol. 314(2), pages 718-734.
    14. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.
    15. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    16. Li, Xinwei & Ke, Jintao & Yang, Hai & Wang, Hai & Zhou, Yaqian, 2024. "An aggregate matching and pick-up model for mobility-on-demand services," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    17. Andres Fielbaum & Maximilian Kronmueller & Javier Alonso-Mora, 2022. "Anticipatory routing methods for an on-demand ridepooling mobility system," Transportation, Springer, vol. 49(6), pages 1921-1962, December.
    18. Wang, Dujuan & Wang, Qi & Yin, Yunqiang & Cheng, T.C.E., 2023. "Optimization of ride-sharing with passenger transfer via deep reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    19. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    20. Keith, David R. & Naumov, Sergey & Rakoff, Hannah E. & Sanches, Lars Meyer & Singh, Anuraag, 2024. "The effect of increasing vehicle utilization on the automotive industry," European Journal of Operational Research, Elsevier, vol. 317(3), pages 776-792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.