IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v168y2022ics136655452200268x.html
   My bibliography  Save this article

The dynamic ride-hailing sharing problem with multiple vehicle types and user classes

Author

Listed:
  • Zhan, Xingbin
  • Szeto, W.Y.
  • (Michael) Chen, Xiqun

Abstract

This paper proposes a dynamic ride-hailing sharing problem with multiple vehicle types and user classes. Ride-hailing vehicles (RHVs) can be classified into express ride-hailing vehicles (ERHVs) and premier ride-hailing vehicles (PRHVs) according to service levels. PRHVs can provide the high-quality ride-hailing service with upmarket vehicles and ERHVs provide the normal ride-hailing service with normal vehicles. The fare of PRHVs is higher. PRHVs can be temporarily used as ERHVs to serve the customers who order ERHVs with or without ride-sharing, which is referred to as the substitution of ERHVs with PRHVs. A lexicographic multi-objective function with three-level objectives is proposed to formulate the problem, in which the first-level objective is to maximize the profit of the platform, the second-level objective is to minimize the number of requests of customers who involve ordering ERHVs matched to PRHVs, and the third-level objective is to minimize the total driving distance of all RHVs. The dynamic problem is divided into a set of continuous and small ride-hailing sharing subproblems based on equal time intervals. Each subproblem is formulated as a mixed integer nonlinear program for matching RHVs to the requests collected in the last time interval or unmatched in previous time intervals and re-scheduling the vehicle routes. To solve the subproblems, a new solution method is proposed based on the modified artificial bee colony algorithm developed by Zhan et al. (2021). Numerical examples using real request data from Didi are given to explore the problem properties, and the results gain insights into the ride-hailing market. For example, the profit of the platform and the number of matched requests are higher when the substitution of ERHVs with PRHVs is allowed while the matching percentage of requests of customers who select a mixed choice is higher when there is no substitution. Different ratios of vehicle types and user classes influence the performance of the ride-hailing sharing market (e.g., the profit of the platform, the number of matched requests, matching percentage, etc.). The value of the fare discount multiplier for the passengers who successfully share RHVs with others can affect the number of shared requests, the number of matched requests, and platform profitability.

Suggested Citation

  • Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "The dynamic ride-hailing sharing problem with multiple vehicle types and user classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:transe:v:168:y:2022:i:c:s136655452200268x
    DOI: 10.1016/j.tre.2022.102891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452200268X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    3. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    4. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.
    6. Wong, K.I. & Wong, S.C. & Yang, Hai & Wu, J.H., 2008. "Modeling urban taxi services with multiple user classes and vehicle modes," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 985-1007, December.
    7. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    8. Volgenant, A., 2002. "Solving some lexicographic multi-objective combinatorial problems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 578-584, June.
    9. Ruibin Bai & Jiawei Li & Jason A D Atkin & Graham Kendall, 2014. "A novel approach to independent taxi scheduling problem based on stable matching," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(10), pages 1501-1510, October.
    10. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Xingbin & Szeto, W.Y. & Wang, Yue, 2023. "The ride-hailing sharing problem with parcel transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Zhan, Xingbin & Szeto, W.Y. & Wang, Yue, 2023. "The ride-hailing sharing problem with parcel transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    3. Egan, Malcolm & Jakob, Michal, 2016. "Market mechanism design for profitable on-demand transport services," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 178-195.
    4. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    8. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    9. Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 64-88.
    10. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    11. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    12. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    13. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    14. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    16. Zhan, Xingbin & Szeto, W.Y. & (Michael) Chen, Xiqun, 2022. "A simulation–optimization framework for a dynamic electric ride-hailing sharing problem with a novel charging strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    17. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    18. Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
    19. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Zhixing Luo & Mengyang Liu & Andrew Lim, 2019. "A Two-Phase Branch-and-Price-and-Cut for a Dial-a-Ride Problem in Patient Transportation," Service Science, INFORMS, vol. 53(1), pages 113-130, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:168:y:2022:i:c:s136655452200268x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.