IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i6d10.1007_s11116-018-9923-2.html
   My bibliography  Save this article

The impact of ride-hailing on vehicle miles traveled

Author

Listed:
  • Alejandro Henao

    (University of Colorado Denver
    National Renewable Energy Laboratory (NREL))

  • Wesley E. Marshall

    (University of Colorado Denver)

Abstract

Ride-haling such as Uber and Lyft are changing the ways people travel. Despite widespread claims that these services help reduce driving, there is little research on this topic. This research paper uses a quasi-natural experiment in the Denver, Colorado, region to analyze basic impacts of ride-hailing on transportation efficiency in terms of deadheading, vehicle occupancy, mode replacement, and vehicle miles traveled (VMT). Realizing the difficulty in obtaining data directly from Uber and Lyft, we designed a quasi-natural experiment—by one of the authors driving for both companies—to collect primary data. This experiment uses an ethnographic and survey-based approach that allows the authors to gain access to exclusive data and real-time passenger feedback. The dataset includes actual travel attributes from 416 ride-hailing rides—Lyft, UberX, LyftLine, and UberPool—and travel behavior and socio-demographics from 311 passenger surveys. For this study, the conservative (lower end) percentage of deadheading miles from ride-hailing is 40.8%. The average vehicle occupancy is 1.4 passengers per ride, while the distance weighted vehicle occupancy is 1.3 without accounting for deadheading and 0.8 when accounting deadheading. When accounting for mode replacement and issues such as driver deadheading, we estimate that ride-hailing leads to approximately 83.5% more VMT than would have been driven had ride-hailing not existed. Although our data collection focused on the Denver region, these results provide insight into the impacts of ride-hailing.

Suggested Citation

  • Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:6:d:10.1007_s11116-018-9923-2
    DOI: 10.1007/s11116-018-9923-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9923-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9923-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    2. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    3. Donald Anderson, 2014. "“Not just a taxi”? For-profit ridesharing, driver strategies, and VMT," Transportation, Springer, vol. 41(5), pages 1099-1117, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    2. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj, Center for Open Science.
    3. Young, Mischa & Farber, Steven, 2019. "The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 383-392.
    4. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    5. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.
    6. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Virginie Boutueil & Kei Tanikawa Obregón & Anna Voskoboynikova, 2019. "Exploring shared mobility services beyond the common-sense understanding: a combination of diachronic and spatial analysis based on case studies of Paris and London," Post-Print hal-02422161, HAL.
    8. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    9. Hossain, Mokter & Mozahem, Najib Ali, 2022. "Drivers’ perceptions of the sharing economy for transport services," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    10. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    11. Dailisan, Damian N. & Lim, May T., 2019. "Vehicular traffic modeling with greedy lane-changing and inordinate waiting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 715-723.
    12. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    13. Guilherme Mendes Resende & Ricardo Carvalho de Andrade Lima, 2018. "Working Paper No. 001/2018 - Competition Effects of the Sharing Economy in Brazil: Has Uber's entry affected the cab-hailing app market from 2014 to 2016?," Documentos de Trabalho 2018011, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    14. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    15. Kyung Sun (Melissa) Rhee & Jinyang Zheng & Youwei Wang & Yong Tan, 2023. "Value of Information Sharing via Ride-Hailing Apps: An Empirical Analysis," Information Systems Research, INFORMS, vol. 34(3), pages 1228-1244, September.
    16. Lazarus, Jessica R. & Caicedo, Juan D. & Bayen, Alexandre M. & Shaheen, Susan A., 2021. "To Pool or Not to Pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 199-222.
    17. David Ennnen & Thorsten Heilker, 2020. "Ride-Hailing Services in Germany: Potential Impacts on Public Transport, Motorized Traffic, and Social Welfare," Working Papers 29, Institute of Transport Economics, University of Muenster.
    18. Yiyuan Ma & Ke Chen & Youzhi Xiao & Rong Fan, 2022. "Does Online Ride-Hailing Service Improve the Efficiency of Taxi Market? Evidence from Shanghai," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    19. Daniel Oviedo & Isabel Granada & Daniel Perez-Jaramillo, 2020. "Ridesourcing and Travel Demand: Potential Effects of Transportation Network Companies in Bogotá," Sustainability, MDPI, vol. 12(5), pages 1-16, February.
    20. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:6:d:10.1007_s11116-018-9923-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.